Publication

Sensing soft robot shape using imus: An experimental investigation

Abstract

Shape estimation of soft robotic systems is challenging due to the range of deformations that can be achieved, and the limited availability of physically compatible sensors. We propose a method of reconstruction using Inertial Measurement Units (IMUs), which are mounted on segments of a deformable manipulator. This approach utilizes the piecewise constant curvature model in combination with the quaternion data from IMUs to allow for accuracy reconstruction and closed-loop control. A key strength of this approach is that it is hardware agnostic, and could be used on any soft structure to provide pose reconstruction and controllability. We explore this approach experimentally on a growing, extendable 3D printed continuum body structure, demonstrating that high accuracy reconstruction that can be achieved. © 2021, The Author(s), under exclusive license to Springer Nature Switzerland AG.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (26)
Soft robotics
Soft robotics is a subfield of robotics that concerns the design, control, and fabrication of robots composed of compliant materials, instead of rigid links. In contrast to rigid-bodied robots built from metals, ceramics and hard plastics, the compliance of soft robots can improve their safety when working in close contact with humans. The goal of soft robotics is the design and construction of robots with physically flexible bodies and electronics. Sometimes softness is limited to part of the machine.
Robotics
Robotics is an interdisciplinary branch of electronics and communication, computer science and engineering. Robotics involves the design, construction, operation, and use of robots. The goal of robotics is to design machines that can help and assist humans. Robotics integrates fields of mechanical engineering, electrical engineering, information engineering, mechatronics engineering, electronics, biomedical engineering, computer engineering, control systems engineering, software engineering, mathematics, etc.
Bio-inspired robotics
Bio-inspired robotic locomotion is a fairly new subcategory of bio-inspired design. It is about learning concepts from nature and applying them to the design of real-world engineered systems. More specifically, this field is about making robots that are inspired by biological systems, including Biomimicry. Biomimicry is copying from nature while bio-inspired design is learning from nature and making a mechanism that is simpler and more effective than the system observed in nature.
Show more
Related publications (34)

Soft Robot Shape Estimation With IMUs Leveraging PCC Kinematics for Drift Filtering

Josephine Anna Eleanor Hughes, Francesco Stella

The control possibilities for soft robots have long been hindered by the need for reliable methods to estimate their configuration. Inertial measurement units (IMUs) can solve this challenge, but they are affected by well-known drift issues. This letter pr ...
Piscataway2024

Soft Robotics: A Route to Equality, Diversity, and Inclusivity in Robotics

Josephine Anna Eleanor Hughes

Robotics is entering our daily lives. The discipline is increasingly crucial in fields such as agriculture, medicine, and rescue operations, impacting our food, health, and planet. At the same time, it is becoming evident that robotic research must embrace ...
Mary Ann Liebert, Inc2024

Prescribing Cartesian Stiffness of Soft Robots by Co-Optimization of Shape and Segment-Level Stiffness

Josephine Anna Eleanor Hughes, Francesco Stella

Soft robots aim to revolutionize how robotic systems interact with the environment thanks to their inherent compliance. Some of these systems are even able to modulate their physical softness. However, simply equipping a robot with softness will not genera ...
MARY ANN LIEBERT, INC2023
Show more
Related MOOCs (11)
Il robot Thymio come strumento di scoperta delle scienze digitali
In questo corso, imparerai a utilizzare il robot Thymio e ad usarlo come strumento didattico per introdurre nella tua classe i principali concetti appartenenti al mondo digitale e al pensiero computaz
Il robot Thymio come strumento di scoperta delle scienze digitali
In questo corso, imparerai a utilizzare il robot Thymio e ad usarlo come strumento didattico per introdurre nella tua classe i principali concetti appartenenti al mondo digitale e al pensiero computaz
Thymio: un robot pour se former à l'informatique
On propose dans ce MOOC de se former à et avec Thymio : apprendre à programmer le robot Thymio et ce faisant, s’initier à l'informatique et la robotique.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.