Publication

Twisted chiral superconductivity in photodoped frustrated Mott insulators

Markus Müller, Jiajun Li
2023
Journal paper
Abstract

Recent advances in ultrafast pump-probe spectroscopy provide access to hidden phases of correlated matter, including light-induced superconducting states. The theoretical understanding of these nonequilibrium phases remains limited, particularly for correlated materials on frustrated lattices. Here we demonstrate that photodoping can induce a new type of chiral superconducting phase in frustrated Mott insulators by forming a condensate of doublons and holons. This metastable phase features a spatially varying order parameter with a 120 degrees phase twist which breaks both time-reversal and inversion symmetry. Under an external electric pulse, the 120 degrees chiral superconducting state can exhibit a second-order supercurrent perpendicular to the field in addition to a first-order parallel response, similar to a nonlinear anomalous Hall effect. Light-induced artificial gauge fields may be used to further stabilize this hidden phase. The presented results demonstrate that the light-induced superconducting state on a triangular lattice is of chiral nature and exhibits distinguishing properties which can be revealed in pump-probe experiments. The general mechanism applies to Mott insulators on various frustrated lattices and is tunable by optical means.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Quantum spin liquid
In condensed matter physics, a quantum spin liquid is a phase of matter that can be formed by interacting quantum spins in certain magnetic materials. Quantum spin liquids (QSL) are generally characterized by their long-range quantum entanglement, fractionalized excitations, and absence of ordinary magnetic order. The quantum spin liquid state was first proposed by physicist Phil Anderson in 1973 as the ground state for a system of spins on a triangular lattice that interact antiferromagnetically with their nearest neighbors, i.
Strongly correlated material
Strongly correlated materials are a wide class of compounds that include insulators and electronic materials, and show unusual (often technologically useful) electronic and magnetic properties, such as metal-insulator transitions, heavy fermion behavior, half-metallicity, and spin-charge separation. The essential feature that defines these materials is that the behavior of their electrons or spinons cannot be described effectively in terms of non-interacting entities.
Graphene
Graphene (ˈgræfiːn) is an allotrope of carbon consisting of a single layer of atoms arranged in a hexagonal lattice nanostructure. The name is derived from "graphite" and the suffix -ene, reflecting the fact that the graphite allotrope of carbon contains numerous double bonds. Each atom in a graphene sheet is connected to its three nearest neighbors by σ-bonds and a delocalised π-bond, which contributes to a valence band that extends over the whole sheet.
Show more
Related publications (36)

Ultrafast control of emergent quantum matter probed by electron microscopy

Benoît Guilhem Michel Binh Truc

In the quest for controlling materials' properties, light as an external stimulus has a special place as it can create new states of matter and enable their ultrafast manipulation. In particular, spintronics, an exciting emergent field relying on the elect ...
EPFL2023

Level crossings and chiral transitions in transverse-field Ising models of adatom and Rydberg chains

Ivo Aguiar Maceira

This thesis is motivated by recent experiments on systems described by extensions of the one-dimensional transverse-field Ising (TFI) model where (1) finite-size properties of Ising-ordered phases -- specifically, ground state level crossings -- were obser ...
EPFL2022

Broken-Symmetry Ground States of the Heisenberg Model on the Pyrochlore Lattice

Giuseppe Carleo, Ao Chen

The spin-1/2 Heisenberg model on the pyrochlore lattice is an iconic frustrated three-dimensional spin system with a rich phase diagram. Besides hosting several ordered phases, the model is debated to possess a spin-liquid ground state when only nearest-ne ...
AMER PHYSICAL SOC2021
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.