Publication

Beam-cavity interactions in high power cyclotrons

Lukas Stingelin
2004
EPFL thesis
Abstract

The ring cyclotron of the Paul Scherrer Institute (PSI) accelerates an intense proton beam from 72MeV up to 590MeV. This happens in four cavities of very high quality factor, oscillating in the fundamental mode. The beam can excite parasitic oscillation modes (HOMs), because of its time structure. Measurements showed that their field can leak out into the vacuum chamber. Until now, there is no tool available to predict the potentially harmful effect of these HOMs onto the beam operation of the cyclotron. It is foreseeable that these effects might play a role if even higher beam currents have to be accelerated. This dissertation therefore deals with the numerical analysis and measurement of beam-cavity interactions. First calculations for a single cavity, interacting with a proton bunch were performed with MAFIA's eigenmode- (E3), time domain- (T3) and particle-in-cell (TS3) solvers. However, the structured grid and the limited computing performance of MAFIA make realistic simulations impossible. A simplified computation method is developed in this dissertation since a self-consistent simulation is impossible on today's computers: The parallel eigensolver Omega3P of the Stanford Linear Accelerator Center (SLAC) allowed us to calculate eigenmodes of the entire ring cyclotron for the first time ever. The rf fields are expanded onto a superposition of these modes and the excitation is calculated in frequency domain. Trajectories of the particles in the static magnetic field, superposed with the space charge fields and the beam excited HOMs, are then simulated. However, the quantitative accuracy of this model is still limited. On the one hand, because of the simplification in the geometry of the simulated rf structure, which otherwise would lead to a problem size going beyond the available computing resources. On the other hand, because it is not yet possible to simulate strongly absorbing boundaries more accurately. The simulation results confirm that up to proton beam currents of 2mA, corresponding to the routinely accelerated beam intensities, only a small deformation of the charge distribution appears. This thesis leads to a new simulation tool for further studies of intensity increases in high power cyclotrons.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (36)
Particle accelerator
A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams. Large accelerators are used for fundamental research in particle physics. The largest accelerator currently active is the Large Hadron Collider (LHC) near Geneva, Switzerland, operated by the CERN. It is a collider accelerator, which can accelerate two beams of protons to an energy of 6.5 TeV and cause them to collide head-on, creating center-of-mass energies of 13 TeV.
Cyclotron
A cyclotron is a type of particle accelerator invented by Ernest Lawrence in 1929–1930 at the University of California, Berkeley, and patented in 1932. A cyclotron accelerates charged particles outwards from the center of a flat cylindrical vacuum chamber along a spiral path. The particles are held to a spiral trajectory by a static magnetic field and accelerated by a rapidly varying electric field. Lawrence was awarded the 1939 Nobel Prize in Physics for this invention. The cyclotron was the first "cyclical" accelerator.
Simulation
A simulation is the imitation of the operation of a real-world process or system over time. Simulations require the use of models; the model represents the key characteristics or behaviors of the selected system or process, whereas the simulation represents the evolution of the model over time. Often, computers are used to execute the simulation. Simulation is used in many contexts, such as simulation of technology for performance tuning or optimizing, safety engineering, testing, training, education, and video games.
Show more
Related publications (60)

Collimation simulations for the FCC-ee

Tatiana Pieloni, Milica Rakic, Roderik Bruce, Guillaume Clément Broggi, Giovanni Iadarola, Félix Simon Carlier

The collimation system of the Future Circular Collider, operating with leptons (FCC-ee), must protect not only the experiments against backgrounds, but also the machine itself from beam losses. With a 17.8 MJ stored energy of the electron and positron beam ...
Iop Publishing Ltd2024

High power electrostatic beam splitter for a proton beamline

Mike Seidel, Hua Zhang

The High Intensity Proton Accelerator facility (HIPA) delivers a 590 MeV cw (50.6 MHz) proton beam with up to 1.4 MW beam power (2.4 mA) to spallation and meson production targets serving particle physics experiments and material research. The main acceler ...
2024

Energy-Efficient Particle Accelerators for Research

Particle accelerators are the drivers for large-scale research infrastructures for particle physics but also for many branches of condensed matter research. The types of accelerator-driven research infrastructures include particle colliders, neutron, muon ...
2024
Show more
Related MOOCs (29)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Show more