Publication

Numerical analysis of a non-singular boundary integral method: Part II: The general case

Jacques Rappaz
2002
Article
Résumé

In order to numerically solve the interior and the exterior Dirichlet problems for the Laplacian operator, we have presented in a previous paper a method which consists in inverting, on a finite element space, a non-singular integral operator for circular domains. This operator was described as a geometrical perturbation of the Steklov operator, and we have precisely defined the relation between the geometrical perturbation and the dimension of the finite element space, in order to obtain a stable and convergent scheme in which there are non-singular integrals. We have also presented another point of view under which the method can be considered as a special quadrature formula method for the standard piecewise linear Galerkin approximation of the weakly singular single-layer potential. In the present paper, we extend the results given in the previous paper to more general cases for which the Laplace problem is set on any (infinity) domains. We prove that the properties of stability and convergence remain valid. Copyright (C) 2002 John Wiley Sons, Ltd.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.