Category

Combinatorial optimization

Summary
Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects, where the set of feasible solutions is discrete or can be reduced to a discrete set. Typical combinatorial optimization problems are the travelling salesman problem ("TSP"), the minimum spanning tree problem ("MST"), and the knapsack problem. In many such problems, such as the ones previously mentioned, exhaustive search is not tractable, and so specialized algorithms that quickly rule out large parts of the search space or approximation algorithms must be resorted to instead. Combinatorial optimization is related to operations research, algorithm theory, and computational complexity theory. It has important applications in several fields, including artificial intelligence, machine learning, auction theory, software engineering, VLSI, applied mathematics and theoretical computer science. Some research literature considers discrete optimization to consist of integer programming together with combinatorial optimization (which in a turn is composed of optimization problems dealing with graph structures), although all of these topics have closely intertwined research literature. It often involves determining the way to efficiently allocate resources used to find solutions to mathematical problems. Applications of combinatorial optimization include, but are not limited to: Logistics Supply chain optimization Developing the best airline network of spokes and destinations Deciding which taxis in a fleet to route to pick up fares Determining the optimal way to deliver packages Allocating jobs to people optimally Designing water distribution networks Earth science problems (e.g. reservoir flow-rates) There is a large amount of literature on polynomial-time algorithms for certain special classes of discrete optimization. A considerable amount of it is unified by the theory of linear programming.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.