Category

Lie algebra

Summary
In mathematics, a Lie algebra (pronounced liː ) is a vector space together with an operation called the Lie bracket, an alternating bilinear map , that satisfies the Jacobi identity. Otherwise said, a Lie algebra is an algebra over a field where the multiplication operation is now called Lie bracket and has two additional properties: it is alternating and satisfies the Jacobi identity. The Lie bracket of two vectors and is denoted . The Lie bracket does not need to be associative, meaning that the Lie algebra can be non associative. Given an associative algebra (like for example the space of square matrices), a Lie bracket can be and is often defined through the commutator, namely defining correctly defines a Lie bracket in addition to the already existing multiplication operation. Lie algebras are closely related to Lie groups, which are groups that are also smooth manifolds: any Lie group gives rise to a Lie algebra, which is its tangent space at the identity. Conversely, to any finite-dimensional Lie algebra over real or complex numbers, there is a corresponding connected Lie group unique up to finite coverings (Lie's third theorem). This correspondence allows one to study the structure and classification of Lie groups in terms of Lie algebras. In physics, Lie groups appear as symmetry groups of physical systems, and their Lie algebras (tangent vectors near the identity) may be thought of as infinitesimal symmetry motions. Thus Lie algebras and their representations are used extensively in physics, notably in quantum mechanics and particle physics. An elementary example (that is not derived from an associative algebra) is the space of three dimensional vectors with the Lie bracket operation defined by the cross product This is skew-symmetric since , and instead of associativity it satisfies the Jacobi identity: This is the Lie algebra of the Lie group of rotations of space, and each vector may be pictured as an infinitesimal rotation around the axis , with velocity equal to the magnitude of .
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.