In mathematics, especially group theory, the centralizer (also called commutant) of a subset S in a group G is the set of elements of G that commute with every element of S, or equivalently, such that conjugation by leaves each element of S fixed. The normalizer of S in G is the set of elements of G that satisfy the weaker condition of leaving the set fixed under conjugation. The centralizer and normalizer of S are subgroups of G. Many techniques in group theory are based on studying the centralizers and normalizers of suitable subsets S.
Suitably formulated, the definitions also apply to semigroups.
In ring theory, the centralizer of a subset of a ring is defined with respect to the semigroup (multiplication) operation of the ring. The centralizer of a subset of a ring R is a subring of R. This article also deals with centralizers and normalizers in a Lie algebra.
The idealizer in a semigroup or ring is another construction that is in the same vein as the centralizer and normalizer.
The centralizer of a subset S of group (or semigroup) G is defined as
where only the first definition applies to semigroups.
If there is no ambiguity about the group in question, the G can be suppressed from the notation. When S = {a} is a singleton set, we write CG(a) instead of CG({a}). Another less common notation for the centralizer is Z(a), which parallels the notation for the center. With this latter notation, one must be careful to avoid confusion between the center of a group G, Z(G), and the centralizer of an element g in G, Z(g).
The normalizer of S in the group (or semigroup) G is defined as
where again only the first definition applies to semigroups. The definitions are similar but not identical. If g is in the centralizer of S and s is in S, then it must be that gs = sg, but if g is in the normalizer, then gs = tg for some t in S, with t possibly different from s. That is, elements of the centralizer of S must commute pointwise with S, but elements of the normalizer of S need only commute with S as a set.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
After introducing the foundations of classical and quantum information theory, and quantum measurement, the course will address the theory and practice of digital quantum computing, covering fundament
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions.
In algebra, ring theory is the study of rings—algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their representations, or, in different language, modules, special classes of rings (group rings, division rings, universal enveloping algebras), as well as an array of properties that proved to be of interest both within the theory itself and for its applications, such as homological properties and polynomial identities.
In mathematics, specifically group theory, the index of a subgroup H in a group G is the number of left cosets of H in G, or equivalently, the number of right cosets of H in G. The index is denoted or or . Because G is the disjoint union of the left cosets and because each left coset has the same size as H, the index is related to the orders of the two groups by the formula (interpret the quantities as cardinal numbers if some of them are infinite). Thus the index measures the "relative sizes" of G and H.
A covering of a topological space is a continuous map with special properties. Let be a topological space. A covering of is a continuous map such that there exists a discrete space and for every an open neighborhood , such that and is a homeomorphism for every . Often, the notion of a covering is used for the covering space as well as for the map . The open sets are called sheets, which are uniquely determined up to a homeomorphism if is connected. For each the discrete subset is called the fiber of .
We present a self-contained proof of the following famous extension theorem due to Carl Herz. A closed subgroup H of a locally compact group G is a set of p-synthesis in G if and only if, for every u is an element of A(p)(H) boolean AND C-00(H) and for eve ...
We consider model order reduction of parameterized Hamiltonian systems describing nondissipative phenomena, like wave-type and transport dominated problems. The development of reduced basis methods for such models is challenged by two main factors: the ric ...
We prove that a closed subgroup H of a locally compact group G is a set of p-uniqueness (1 < p < infinity) if and only if H is locally negligible. We also obtain the inverse projection theorem for sets of p-uniqueness. ...