In quantum information theory, a quantum channel is a communication channel which can transmit quantum information, as well as classical information. An example of quantum information is the state of a qubit. An example of classical information is a text document transmitted over the Internet.
More formally, quantum channels are completely positive (CP) trace-preserving maps between spaces of operators. In other words, a quantum channel is just a quantum operation viewed not merely as the reduced dynamics of a system but as a pipeline intended to carry quantum information. (Some authors use the term "quantum operation" to also include trace-decreasing maps while reserving "quantum channel" for strictly trace-preserving maps.)
We will assume for the moment that all state spaces of the systems considered, classical or quantum, are finite-dimensional.
The memoryless in the section title carries the same meaning as in classical information theory: the output of a channel at a given time depends only upon the corresponding input and not any previous ones.
Consider quantum channels that transmit only quantum information. This is precisely a quantum operation, whose properties we now summarize.
Let and be the state spaces (finite-dimensional Hilbert spaces) of the sending and receiving ends, respectively, of a channel. will denote the family of operators on In the Schrödinger picture, a purely quantum channel is a map between density matrices acting on and with the following properties:
As required by postulates of quantum mechanics, needs to be linear.
Since density matrices are positive, must preserve the cone of positive elements. In other words, is a positive map.
If an ancilla of arbitrary finite dimension n is coupled to the system, then the induced map where In is the identity map on the ancilla, must also be positive. Therefore, it is required that is positive for all n. Such maps are called completely positive.
Density matrices are specified to have trace 1, so has to preserve the trace.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Today one is able to manipulate matter at the nanoscale were quantum behavior becomes important and possibly information processing will have to take into account laws of quantum physics. We introduce
This lecture describes advanced concepts and applications of quantum optics. It emphasizes the connection with ongoing research, and with the fast growing field of quantum technologies. The topics cov
Information is processed in physical devices. In the quantum regime the concept of classical bit is replaced by the quantum bit. We introduce quantum principles, and then quantum communications, key d
Quantum cryptography is the science of exploiting quantum mechanical properties to perform cryptographic tasks. The best known example of quantum cryptography is quantum key distribution which offers an information-theoretically secure solution to the key exchange problem. The advantage of quantum cryptography lies in the fact that it allows the completion of various cryptographic tasks that are proven or conjectured to be impossible using only classical (i.e. non-quantum) communication.
Quantum information science is a field that combines the principles of quantum mechanics with information science to study the processing, analysis, and transmission of information. It covers both theoretical and experimental aspects of quantum physics, including the limits of what can be achieved with quantum information. The term quantum information theory is sometimes used, but it does not include experimental research and can be confused with a subfield of quantum information science that deals with the processing of quantum information.
In quantum mechanics, a quantum operation (also known as quantum dynamical map or quantum process) is a mathematical formalism used to describe a broad class of transformations that a quantum mechanical system can undergo. This was first discussed as a general stochastic transformation for a density matrix by George Sudarshan. The quantum operation formalism describes not only unitary time evolution or symmetry transformations of isolated systems, but also the effects of measurement and transient interactions with an environment.
Fields of technology as diverse as microwave filter construction, characterization of material interfaces with atomic precision, and detection of gravitational waves from astronomical sources employ mechanical resonators at their core. The utility of mecha ...
EPFL2023
Randomized measurement protocols such as classical shadows represent powerful resources for quantum technologies, with applications ranging from quantum state characterization and process tomography to machine learning and error mitigation. Recently, the n ...
Within the AdS/CFT correspondence, we identify a class of CFT operators which represent diff-invariant and approximately local observables in the gravitational dual. Provided that the bulk state breaks all asymptotic symmetries, we show that these operator ...