A return period, also known as a recurrence interval or repeat interval, is an average time or an estimated average time between events such as earthquakes, floods, landslides, or river discharge flows to occur.
It is a statistical measurement typically based on historic data over an extended period, and is used usually for risk analysis. Examples include deciding whether a project should be allowed to go forward in a zone of a certain risk or designing structures to withstand events with a certain return period. The following analysis assumes that the probability of the event occurring does not vary over time and is independent of past events.
Recurrence interval
n number of years on record;
m is the rank of observed occurrences when arranged in descending order
For floods, the event may be measured in terms of m3/s or height; for storm surges, in terms of the height of the surge, and similarly for other events. This is Weibull's Formula.
The theoretical return period between occurrences is the inverse of the average frequency of occurrence. For example, a 10-year flood has a 1/10 = 0.1 or 10% chance of being exceeded in any one year and a 50-year flood has a 0.02 or 2% chance of being exceeded in any one year.
This does not mean that a 100-year flood will happen regularly every 100 years, or only once in 100 years. Despite the connotations of the name "return period". In any given 100-year period, a 100-year event may occur once, twice, more, or not at all, and each outcome has a probability that can be computed as below.
Also, the estimated return period below is a statistic: it is computed from a set of data (the observations), as distinct from the theoretical value in an idealized distribution. One does not actually know that a certain or greater magnitude happens with 1% probability, only that it has been observed exactly once in 100 years.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
"Hydrology for Engineers" is an introduction to the study of floods, droughts and a fair distribution of water. The course will introduce basic hydrologic concepts and methods: probability and statist
Le cours est une introduction à la théorie des valeurs extrêmes et son utilisation pour la gestion des risques hydrologiques (essentiellement crues). Une ouverture plus large sur la gestion des danger
Related lectures (6)
Surface runoff (also known as overland flow or terrestrial runoff) is the unconfined flow of water over the ground surface, in contrast to channel runoff (or stream flow). It occurs when excess rainwater, stormwater, meltwater, or other sources, can no longer sufficiently rapidly infiltrate in the soil. This can occur when the soil is saturated by water to its full capacity, and the rain arrives more quickly than the soil can absorb it. Surface runoff often occurs because impervious areas (such as roofs and pavement) do not allow water to soak into the ground.
The frequency of exceedance, sometimes called the annual rate of exceedance, is the frequency with which a random process exceeds some critical value. Typically, the critical value is far from the mean. It is usually defined in terms of the number of peaks of the random process that are outside the boundary. It has applications related to predicting extreme events, such as major earthquakes and floods. The frequency of exceedance is the number of times a stochastic process exceeds some critical value, usually a critical value far from the process' mean, per unit time.
A flood is an overflow of water (or rarely other fluids) that submerges land that is usually dry. In the sense of "flowing water", the word may also be applied to the inflow of the tide. Floods are an area of study of the discipline hydrology and are of significant concern in agriculture, civil engineering and public health. Human changes to the environment often increase the intensity and frequency of flooding, for example land use changes such as deforestation and removal of wetlands, changes in waterway course or flood controls such as with levees, and larger environmental issues such as climate change and sea level rise.
Extreme value theory provides an asymptotically justified framework for estimation of exceedance probabilities in regions where few or no observations are available. For multivariate tail estimation, the strength of extremal dependence is crucial and it is ...
Institute of Mathematical Statistics2017
, ,
Floodplains downstream of a dam, where the natural flow regime is replaced by a constant residual flow discharge, often lack sediment supply and periodic inundation due to the absence of natural flood events. In this study, a flood with a one-year return p ...
The scaling relation between the drainage area and stream length (Hack’s law), along with exceedance probabilities of drainage area, discharge and upstream flow network length are well known for channelized fluvial regions. We report here on a laboratory e ...