In mathematics, sheaf cohomology is the application of homological algebra to analyze the global sections of a sheaf on a topological space. Broadly speaking, sheaf cohomology describes the obstructions to solving a geometric problem globally when it can be solved locally. The central work for the study of sheaf cohomology is Grothendieck's 1957 Tôhoku paper.
Sheaves, sheaf cohomology, and spectral sequences were introduced by Jean Leray at the prisoner-of-war camp Oflag XVII-A in Austria. From 1940 to 1945, Leray and other prisoners organized a "université en captivité" in the camp.
Leray's definitions were simplified and clarified in the 1950s. It became clear that sheaf cohomology was not only a new approach to cohomology in algebraic topology, but also a powerful method in complex analytic geometry and algebraic geometry. These subjects often involve constructing global functions with specified local properties, and sheaf cohomology is ideally suited to such problems. Many earlier results such as the Riemann–Roch theorem and the Hodge theorem have been generalized or understood better using sheaf cohomology.
The category of sheaves of abelian groups on a topological space X is an , and so it makes sense to ask when a morphism f: B → C of sheaves is injective (a monomorphism) or surjective (an epimorphism). One answer is that f is injective (respectively surjective) if and only if the associated homomorphism on stalks Bx → Cx is injective (respectively surjective) for every point x in X. It follows that f is injective if and only if the homomorphism B(U) → C(U) of sections over U is injective for every open set U in X. Surjectivity is more subtle, however: the morphism f is surjective if and only if for every open set U in X, every section s of C over U, and every point x in U, there is an open neighborhood V of x in U such that s restricted to V is the image of some section of B over V. (In words: every section of C lifts locally to sections of B.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
We define p-adic BPS or pBPS invariants for moduli spaces M-beta,M-chi of one-dimensional sheaves on del Pezzo and K3 surfaces by means of integration over a non-archimedean local field F. Our definition relies on a canonical measure mu can on the F-analyt ...
In mathematics, and more specifically in homological algebra, a resolution (or left resolution; dually a coresolution or right resolution) is an exact sequence of modules (or, more generally, of s of an ), which is used to define invariants characterizing the structure of a specific module or object of this category. When, as usually, arrows are oriented to the right, the sequence is supposed to be infinite to the left for (left) resolutions, and to the right for right resolutions.
In mathematics, a sheaf (: sheaves) is a tool for systematically tracking data (such as sets, abelian groups, rings) attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data is well behaved in that it can be restricted to smaller open sets, and also the data assigned to an open set is equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set (intuitively, every piece of data is the sum of its parts).
Henri Paul Cartan (kaʁtɑ̃; 8 July 1904 – 13 August 2008) was a French mathematician who made substantial contributions to algebraic topology. He was the son of the mathematician Élie Cartan, nephew of mathematician Anna Cartan, oldest brother of composer fr, physicist fr and mathematician fr, and the son-in-law of physicist Pierre Weiss. According to his own words, Henri Cartan was interested in mathematics at a very young age, without being influenced by his family.
Let h be a connective homology theory. We construct a functorial relative plus construction as a Bousfield localization functor in the category of maps of spaces. It allows us to associate to a pair (X,H), consisting of a connected space X and an hperfect ...
2023
We determine the bounded cohomology of the group of homeomorphisms of certain low-dimensional manifolds. In particular, for the group of orientation-preserving homeomorphisms of the circle and of the closed 2-disc, it is isomorphic to the polynomial ring g ...