Summary
In mathematics, sheaf cohomology is the application of homological algebra to analyze the global sections of a sheaf on a topological space. Broadly speaking, sheaf cohomology describes the obstructions to solving a geometric problem globally when it can be solved locally. The central work for the study of sheaf cohomology is Grothendieck's 1957 Tôhoku paper. Sheaves, sheaf cohomology, and spectral sequences were introduced by Jean Leray at the prisoner-of-war camp Oflag XVII-A in Austria. From 1940 to 1945, Leray and other prisoners organized a "université en captivité" in the camp. Leray's definitions were simplified and clarified in the 1950s. It became clear that sheaf cohomology was not only a new approach to cohomology in algebraic topology, but also a powerful method in complex analytic geometry and algebraic geometry. These subjects often involve constructing global functions with specified local properties, and sheaf cohomology is ideally suited to such problems. Many earlier results such as the Riemann–Roch theorem and the Hodge theorem have been generalized or understood better using sheaf cohomology. The category of sheaves of abelian groups on a topological space X is an , and so it makes sense to ask when a morphism f: B → C of sheaves is injective (a monomorphism) or surjective (an epimorphism). One answer is that f is injective (respectively surjective) if and only if the associated homomorphism on stalks Bx → Cx is injective (respectively surjective) for every point x in X. It follows that f is injective if and only if the homomorphism B(U) → C(U) of sections over U is injective for every open set U in X. Surjectivity is more subtle, however: the morphism f is surjective if and only if for every open set U in X, every section s of C over U, and every point x in U, there is an open neighborhood V of x in U such that s restricted to V is the image of some section of B over V. (In words: every section of C lifts locally to sections of B.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.