In the mathematical theory of probability, the entropy rate or source information rate of a stochastic process is, informally, the time density of the average information in a stochastic process. For stochastic processes with a countable index, the entropy rate is the limit of the joint entropy of members of the process divided by , as tends to infinity:
when the limit exists. An alternative, related quantity is:
For strongly stationary stochastic processes, . The entropy rate can be thought of as a general property of stochastic sources; this is the asymptotic equipartition property. The entropy rate may be used to estimate the complexity of stochastic processes. It is used in diverse applications ranging from characterizing the complexity of languages, blind source separation, through to optimizing quantizers and data compression algorithms. For example, a maximum entropy rate criterion may be used for feature selection in machine learning.
Since a stochastic process defined by a Markov chain that is irreducible, aperiodic
and positive recurrent has a stationary distribution, the entropy rate is independent of the initial distribution.
For example, for such a Markov chain defined on a countable number of states, given the transition matrix , is given by:
where is the asymptotic distribution of the chain.
A simple consequence of this definition is that an i.i.d. stochastic process has an entropy rate that is the same as the entropy of any individual member of the process.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Text, sound, and images are examples of information sources stored in our computers and/or communicated over the Internet. How do we measure, compress, and protect the informatin they contain?
In mathematics, a random walk is a random process that describes a path that consists of a succession of random steps on some mathematical space. An elementary example of a random walk is the random walk on the integer number line which starts at 0, and at each step moves +1 or −1 with equal probability. Other examples include the path traced by a molecule as it travels in a liquid or a gas (see Brownian motion), the search path of a foraging animal, or the price of a fluctuating stock and the financial status of a gambler.
A Markov chain or Markov process is a stochastic model describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event. Informally, this may be thought of as, "What happens next depends only on the state of affairs now." A countably infinite sequence, in which the chain moves state at discrete time steps, gives a discrete-time Markov chain (DTMC). A continuous-time process is called a continuous-time Markov chain (CTMC).
In information theory, the entropy of a random variable is the average level of "information", "surprise", or "uncertainty" inherent to the variable's possible outcomes. Given a discrete random variable , which takes values in the alphabet and is distributed according to : where denotes the sum over the variable's possible values. The choice of base for , the logarithm, varies for different applications. Base 2 gives the unit of bits (or "shannons"), while base e gives "natural units" nat, and base 10 gives units of "dits", "bans", or "hartleys".
Hand gestures are one of the most natural and expressive way for humans to convey information, and thus hand gesture recognition has become a research hotspot in the human-machine interface (HMI) field. In particular, biological signals such as surface ele ...
Barocaloric (BC) materials provide cheaper and more energy efficient alternatives to traditional refrigerants. Some liquid alkanes were recently shown to exhibit a colossal BC effect, matching the entropy changes in commercial vapour-liquid refrigerants. D ...
Quantum random number generators (QRNGs) are a burgeoning technology used for a variety of applications, including modern security and encryption systems. Typical methods exploit an entropy source combined with an extraction or bit generation circuit in or ...