Summary
In theoretical physics, an invariant is an observable of a physical system which remains unchanged under some transformation. Invariance, as a broader term, also applies to the no change of form of physical laws under a transformation, and is closer in scope to the mathematical definition. Invariants of a system are deeply tied to the symmetries imposed by its environment. Invariance is an important concept in modern theoretical physics, and many theories are expressed in terms of their symmetries and invariants. Lorentz scalar In classical and quantum mechanics, invariance of space under translation results in momentum being an invariant and the conservation of momentum, whereas invariance of the origin of time, i.e. translation in time, results in energy being an invariant and the conservation of energy. In general, by Noether's theorem, any invariance of a physical system under a continuous symmetry leads to a fundamental conservation law. In crystals, the electron density is periodic and invariant with respect to discrete translations by unit cell vectors. In very few materials, this symmetry can be broken due to enhanced electron correlations. Another examples of physical invariants are the speed of light, and charge and mass of a particle observed from two reference frames moving with respect to one another (invariance under a spacetime Lorentz transformation), and invariance of time and acceleration under a Galilean transformation between two such frames moving at low velocities. Quantities can be invariant under some common transformations but not under others. For example, the velocity of a particle is invariant when switching coordinate representations from rectangular to curvilinear coordinates, but is not invariant when transforming between frames of reference that are moving with respect to each other. Other quantities, like the speed of light, are always invariant. Physical laws are said to be invariant under transformations when their predictions remain unchanged. This generally means that the form of the law (e.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (6)
PHYS-415: Particle physics I
Presentation of particle properties, their symmetries and interactions. Introduction to quantum electrodynamics and to the Feynman rules.
PHYS-324: Classical electrodynamics
The goal of this course is the study of the physical and conceptual consequences of Maxwell equations.
PHYS-739: Conformal Field theory and Gravity
This course is an introduction to the non-perturbative bootstrap approach to Conformal Field Theory and to the Gauge/Gravity duality, emphasizing the fruitful interplay between these two ideas.
Show more
Related publications (49)