In mathematics, specifically in abstract algebra, a torsion-free abelian group is an abelian group which has no non-trivial torsion elements; that is, a group in which the group operation is commutative and the identity element is the only element with finite order.
While finitely generated abelian groups are completely classified, not much is known about infinitely generated abelian groups, even in the torsion-free countable case.
Abelian group
An abelian group is said to be torsion-free if no element other than the identity is of finite order. Explicitly, for any , the only element for which is .
A natural example of a torsion-free group is , as only the integer 0 can be added to itself finitely many times to reach 0. More generally, the free abelian group is torsion-free for any . An important step in the proof of the classification of finitely generated abelian groups is that every such torsion-free group is isomorphic to a .
A non-finitely generated countable example is given by the additive group of the polynomial ring (the free abelian group of countable rank).
More complicated examples are the additive group of the rational field , or its subgroups such as (rational numbers whose denominator is a power of ). Yet more involved examples are given by groups of higher rank.
Rank of an abelian group
The rank of an abelian group is the dimension of the -vector space . Equivalently it is the maximal cardinality of a linearly independent (over ) subset of .
If is torsion-free then it injects into . Thus, torsion-free abelian groups of rank 1 are exactly subgroups of the additive group .
Torsion-free abelian groups of rank 1 have been completely classified. To do so one associates to a group a subset of the prime numbers, as follows: pick any , for a prime we say that if and only if for every . This does not depend on the choice of since for another there exists such that . Baer proved that is a complete isomorphism invariant for rank-1 torsion free abelian groups.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Après une introduction à la théorie des catégories, nous appliquerons la théorie générale au cas particulier des groupes, ce qui nous permettra de bien mettre en perspective des notions telles que quo
This course consists of two parts. The first part covers basic concepts of molecular symmetry and the application of group theory to describe it. The second part introduces Laplace transforms and Four
In group theory, a branch of mathematics, a torsion group or a periodic group is a group in which every element has finite order. The exponent of such a group, if it exists, is the least common multiple of the orders of the elements. For example, it follows from Lagrange's theorem that every finite group is periodic and it has an exponent dividing its order. Examples of infinite periodic groups include the additive group of the ring of polynomials over a finite field, and the quotient group of the rationals by the integers, as well as their direct summands, the Prüfer groups.
In mathematics, specifically in ring theory, a torsion element is an element of a module that yields zero when multiplied by some non-zero-divisor of the ring. The torsion submodule of a module is the submodule formed by the torsion elements. A torsion module is a module that equals its torsion submodule. A module is torsion-free if its torsion submodule comprises only the zero element. This terminology is more commonly used for modules over a domain, that is, when the regular elements of the ring are all its nonzero elements.
In the theory of abelian groups, the torsion subgroup AT of an abelian group A is the subgroup of A consisting of all elements that have finite order (the torsion elements of A). An abelian group A is called a torsion group (or periodic group) if every element of A has finite order and is called torsion-free if every element of A except the identity is of infinite order. The proof that AT is closed under the group operation relies on the commutativity of the operation (see examples section).
Explores the theory and applications of conformal transformations, covering special conformal transformations and isomorphic transformations.
, ,
We examine the moments of the number of lattice points in a fixed ball of volume V for lattices in Euclidean space which are modules over the ring of integers of a number field K. In particular, denoting by ωK the number of roots of unity in K, we ...
arXiv2023
The Cremona group is the group of birational transformations of the complex projective plane. In this paper we classify its subgroups that consist only of elliptic elements using elementary model theory. This yields in particular a description of the struc ...
We study actions of groups by orientation preserving homeomorphisms on R (or an interval) that are minimal, have solvable germs at +/-infinity and contain a pair of elements of a certain dynamical type. We call such actions coherent. We establish that such ...