Concept

Torsion (algèbre)

Résumé
En algèbre, dans un groupe, un élément est dit de torsion s'il est d'ordre fini, c'est-à-dire si l'une de ses puissances non nulle est l'élément neutre. La torsion d'un groupe est l'ensemble de ses éléments de torsion. Un groupe est dit sans torsion si sa torsion ne contient que le neutre, c'est-à-dire si tout élément différent du neutre est d'ordre infini. Si le groupe est abélien, sa torsion est un sous-groupe. Par exemple, le sous-groupe de torsion du groupe abélien (\mathbb R/ \mathbb Z,+) est \mathbb Q/ \mathbb Z. Un groupe abélien est sans torsion si et seulement s'il est plat en tant que ℤ-module. Si la torsion T d'un groupe G est un sous-groupe alors T est pleinement caractéristique dans G et G/T est sans torsion. Un groupe de torsion est un groupe égal à sa torsion, c'est-à-dire un groupe dont tous les éléments sont d'ordre fini. Il existe des groupes de torsion infinis (par exemple \mathbb Q/ \mathbb Z). La notion de torsion se
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement