A fire-tube boiler is a type of boiler in which hot gases pass from a fire through one or more tubes running through a sealed container of water. The heat of the gases is transferred through the walls of the tubes by thermal conduction, heating the water and ultimately creating steam.
The fire-tube boiler developed as the third of the four major historical types of boilers: low-pressure tank or "haystack" boilers, flued boilers with one or two large flues, fire-tube boilers with many small tubes, and high-pressure water-tube boilers. Their advantage over flued boilers with a single large flue is that the many small tubes offer far greater heating surface area for the same overall boiler volume. The general construction is as a tank of water penetrated by tubes that carry the hot flue gases from the fire. The tank is usually cylindrical for the most part—being the strongest practical shape for a pressurized container—and this cylindrical tank may be either horizontal or vertical.
This type of boiler was used on virtually all steam locomotives in the horizontal "locomotive" form. This has a cylindrical barrel containing the fire tubes, but also has an extension at one end to house the "firebox". This firebox has an open base to provide a large grate area and often extends beyond the cylindrical barrel to form a rectangular or tapered enclosure. The horizontal fire-tube boiler is also typical of marine applications, using the Scotch boiler; thus, these boilers are commonly referred to as "scotch-marine" or "marine" type boilers. Vertical boilers have also been built of the multiple fire-tube type, although these are comparatively rare; most vertical boilers were either flued, or with cross water-tubes.
In the locomotive-type boiler, fuel is burnt in a firebox to produce hot combustion gases. The firebox is surrounded by a cooling jacket of water connected to the long, cylindrical boiler shell. The hot gases are directed along a series of fire tubes, or flues, that penetrate the boiler and heat the water thereby generating saturated ("wet") steam.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course introduces the basic concepts of thermodynamics and heat transfer, and thermodynamic properties of matter and their calculation. The students will master the concepts of heat, mass, and mom
This course presents an overview of (i) the current energy system and uses (ii) the main principles of conventional and renewable energy technologies and (iii) the most important parameters that defin
A high pressure watertube boiler (also spelled water-tube and water tube) is a type of boiler in which water circulates in tubes heated externally by the fire. Fuel is burned inside the furnace, creating hot gas which boils water in the steam-generating tubes. In smaller boilers, additional generating tubes are separate in the furnace, while larger utility boilers rely on the water-filled tubes that make up the walls of the furnace to generate steam. The heated water/steam mixture then rises into the steam drum.
A safety valve is a valve that acts as a fail-safe. An example of safety valve is a pressure relief valve (PRV), which automatically releases a substance from a boiler, pressure vessel, or other system, when the pressure or temperature exceeds preset limits. Pilot-operated relief valves are a specialized type of pressure safety valve. A leak tight, lower cost, single emergency use option would be a rupture disk. Safety valves were first developed for use on steam boilers during the Industrial Revolution.
A traction engine is a steam-powered tractor used to move heavy loads on roads, plough ground or to provide power at a chosen location. The name derives from the Latin tractus, meaning 'drawn', since the prime function of any traction engine is to draw a load behind it. They are sometimes called road locomotives to distinguish them from railway locomotives – that is, steam engines that run on rails. Traction engines tend to be large, robust and powerful, but also heavy, slow, and difficult to manoeuvre.
Explores vapor power systems, emphasizing the Rankine cycle and its enhancements for increased efficiency.
Covers the state-of-the-art improvements in Rankine cycles, focusing on turbine efficiency and ideal energy production.
Explores energy balances on non-reactive systems, analyzing the conversion of liquid water to saturated steam in a boiler.
, ,
The recent geopolitical conflicts in Europe have underscored the vulnerability of the current energy system to the volatility of energy carrier prices. In the prospect of defining robust energy systems ensuring sustainable energy supply in the future, the ...
Pergamon-Elsevier Science Ltd2024
, ,
The recent geopolitical conflicts in Europe highlighted the sensibility of the current energy system to the volatility of energy carrier prices. In the prospect of defining robust energy system configurations to ensure energy supply stability, it is necess ...
A theoretical case study on steam generation has been performed. Different methods of producing steam by vapour compression, direct electrical heating, gas heating, heat pumping, use of waste heat, and a mixture thereof, were theoretically analysed. The fi ...