A Hamiltonian system is a dynamical system governed by Hamilton's equations. In physics, this dynamical system describes the evolution of a physical system such as a planetary system or an electron in an electromagnetic field. These systems can be studied in both Hamiltonian mechanics and dynamical systems theory.
Informally, a Hamiltonian system is a mathematical formalism developed by Hamilton to describe the evolution equations of a physical system. The advantage of this description is that it gives important insights into the dynamics, even if the initial value problem cannot be solved analytically. One example is the planetary movement of three bodies: while there is no closed-form solution to the general problem, Poincaré showed for the first time that it exhibits deterministic chaos.
Formally, a Hamiltonian system is a dynamical system characterised by the scalar function , also known as the Hamiltonian. The state of the system, , is described by the generalized coordinates and , corresponding to generalized momentum and position respectively. Both and are real-valued vectors with the same dimension N. Thus, the state is completely described by the 2N-dimensional vector
and the evolution equations are given by Hamilton's equations:
The trajectory is the solution of the initial value problem defined by Hamilton's equations and the initial condition .
If the Hamiltonian is not explicitly time-dependent, i.e. if , then the Hamiltonian does not vary with time at all:
and thus the Hamiltonian is a constant of motion, whose constant equals the total energy of the system: . Examples of such systems are the undamped pendulum, the harmonic oscillator, and dynamical billiards.
Simple harmonic motion
An example of a time-independent Hamiltonian system is the harmonic oscillator. Consider the system defined by the coordinates and . Then the Hamiltonian is given by
The Hamiltonian of this system does not depend on time and thus the energy of the system is conserved.
One important property of a Hamiltonian dynamical system is that it has a symplectic structure.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Fundamentals of optomechanics. Basic principles, recent developments and applications.
Fundamentals of quantum mechanics as applied to atoms, molecules, and solids. Electronic, optical, and magnetic properties of solids.
Information is processed in physical devices. In the quantum regime the concept of classical bit is replaced by the quantum bit. We introduce quantum principles, and then quantum communications, key d
Présentation des méthodes de la mécanique analytique (équations de Lagrange et de Hamilton) et introduction aux notions de modes normaux et de stabilité.
In physics and classical mechanics, the three-body problem is the problem of taking the initial positions and velocities (or momenta) of three point masses and solving for their subsequent motion according to Newton's laws of motion and Newton's law of universal gravitation. The three-body problem is a special case of the n-body problem. Unlike two-body problems, no general closed-form solution exists, as the resulting dynamical system is chaotic for most initial conditions, and numerical methods are generally required.
The Kolmogorov–Arnold–Moser (KAM) theorem is a result in dynamical systems about the persistence of quasiperiodic motions under small perturbations. The theorem partly resolves the small-divisor problem that arises in the perturbation theory of classical mechanics. The problem is whether or not a small perturbation of a conservative dynamical system results in a lasting quasiperiodic orbit. The original breakthrough to this problem was given by Andrey Kolmogorov in 1954.
In mathematics, a symplectic integrator (SI) is a numerical integration scheme for Hamiltonian systems. Symplectic integrators form the subclass of geometric integrators which, by definition, are canonical transformations. They are widely used in nonlinear dynamics, molecular dynamics, discrete element methods, accelerator physics, plasma physics, quantum physics, and celestial mechanics. Symplectic integrators are designed for the numerical solution of Hamilton's equations, which read where denotes the position coordinates, the momentum coordinates, and is the Hamiltonian.
Covers the application of group representations theory in quantum physics.
Explores canonical transformations, their properties, and applications in Hamiltonian mechanics, emphasizing their role in simplifying the analysis of complex systems.
Explores canonical transformations, phase portraits, and action variables in Hamiltonian systems and harmonic oscillators.
. High-resolution simulations of particle-based kinetic plasma models typically require a high number of particles and thus often become computationally intractable. This is exacerbated in multi-query simulations, where the problem depends on a set of para ...
AMER MATHEMATICAL SOC2023
In this thesis, we propose model order reduction techniques for high-dimensional PDEs that preserve structures of the original problems and develop a closure modeling framework leveraging the Mori-Zwanzig formalism and recurrent neural networks. Since high ...
EPFL2022
, ,
This work proposes an adaptive structure-preserving model order reduction method for finite-dimensional parametrized Hamiltonian systems modeling non-dissipative phenomena. To overcome the slowly decaying Kolmogorov width typical of transport problems, the ...