The rectangular function (also known as the rectangle function, rect function, Pi function, Heaviside Pi function, gate function, unit pulse, or the normalized boxcar function) is defined as
Alternative definitions of the function define to be 0, 1, or undefined.
Its periodic version is called a rectangular wave.
The rect function has been introduced by Woodward in as an ideal cutout operator, together with the sinc function as an ideal interpolation operator, and their counter operations which are sampling (comb operator) and replicating (rep operator), respectively.
The rectangular function is a special case of the more general boxcar function:
where is the Heaviside step function; the function is centered at and has duration , from to
The unitary Fourier transforms of the rectangular function are
using ordinary frequency f, where is the normalized form of the sinc function and
using angular frequency , where is the unnormalized form of the sinc function.
For , its Fourier transform isNote that as long as the definition of the pulse function is only motivated by its behavior in the time-domain experience, there is no reason to believe that the oscillatory interpretation (i.e. the Fourier transform function) should be intuitive, or directly understood by humans. However, some aspects of the theoretical result may be understood intuitively, as finiteness in time domain corresponds to an infinite frequency response. (Vice versa, a finite Fourier transform will correspond to infinite time domain response.)
We can define the triangular function as the convolution of two rectangular functions:
Uniform distribution (continuous)
Viewing the rectangular function as a probability density function, it is a special case of the continuous uniform distribution with The characteristic function is
and its moment-generating function is
where is the hyperbolic sine function.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours pose les bases d'un concept essentiel en ingénierie : la notion de système. Plus spécifiquement, le cours présente la théorie des systèmes linéaires invariants dans le temps (SLIT), qui sont
L'objectif de ce cours est d'introduire les étudiants à la pensée algorithmique, de les familiariser avec les fondamentaux de l'Informatique et de développer une première compétence en programmation (
Présentation des concepts et des outils de base pour l'analyse et la caractérisation des signaux, la conception de systèmes de traitement et la modélisation linéaire de systèmes pour les étudiants en
In mathematics, a Dirac comb (also known as sha function, impulse train or sampling function) is a periodic function with the formula for some given period . Here t is a real variable and the sum extends over all integers k. The Dirac delta function and the Dirac comb are tempered distributions. The graph of the function resembles a comb (with the s as the comb's teeth), hence its name and the use of the comb-like Cyrillic letter sha (Ш) to denote the function. The symbol , where the period is omitted, represents a Dirac comb of unit period.
In mathematics, physics and engineering, the sinc function, denoted by sinc(x), has two forms, normalized and unnormalized. In mathematics, the historical unnormalized sinc function is defined for x ≠ 0 by Alternatively, the unnormalized sinc function is often called the sampling function, indicated as Sa(x). In digital signal processing and information theory, the normalized sinc function is commonly defined for x ≠ 0 by In either case, the value at x = 0 is defined to be the limiting value for all real a ≠ 0 (the limit can be proven using the squeeze theorem).
In mathematics, any integrable function can be made into a periodic function with period P by summing the translations of the function by integer multiples of P. This is called periodic summation: When is alternatively represented as a Fourier series, the Fourier coefficients are equal to the values of the continuous Fourier transform, at intervals of . That identity is a form of the Poisson summation formula. Similarly, a Fourier series whose coefficients are samples of at constant intervals (T) is equivalent to a periodic summation of which is known as a discrete-time Fourier transform.
Adaptive signal processing, A/D and D/A. This module provides the basic
tools for adaptive filtering and a solid mathematical framework for sampling and
quantization
We study the basic problem of assigning memoryless workers to tasks with dynamically changing demands. Given a set of w workers and a multiset T ⊆ [t] of |T| = w tasks, a memoryless worker-task assignment function is any function ϕ that assigns the workers ...
Schloss Dagstuhl -- Leibniz-Zentrum fur Informatik2022
We obtain new Fourier interpolation and uniqueness results in all dimensions, extending methods and results by the first author and M. Sousa [11] and the second author [12]. We show that the only Schwartz function which, together with its Fourier transform ...
ACADEMIC PRESS INC ELSEVIER SCIENCE2022
We prove that every Schwartz function in Euclidean space can be completely recovered given only its restrictions and the restrictions of its Fourier transform to all origin-centered spheres whose radii are square roots of integers. In particular, the only ...