Summary
A gluon (ˈɡluːɒn ) is an elementary particle that acts as the exchange particle (or gauge boson) for the strong force between quarks. It is analogous to the exchange of photons in the electromagnetic force between two charged particles. Gluons bind quarks together, forming hadrons such as protons and neutrons. Gluons are vector gauge bosons that mediate strong interactions of quarks in quantum chromodynamics (QCD). Gluons themselves carry the color charge of the strong interaction. This is unlike the photon, which mediates the electromagnetic interaction but lacks an electric charge. Gluons therefore participate in the strong interaction in addition to mediating it, making QCD significantly harder to analyze than quantum electrodynamics (QED). The gluon is a vector boson, which means, like the photon, it has a spin of 1. While massive spin-1 particles have three polarization states, massless gauge bosons like the gluon have only two polarization states because gauge invariance requires the polarization to be transverse to the direction that the gluon is traveling. In quantum field theory, unbroken gauge invariance requires that gauge bosons have zero mass. Experiments limit the gluon's rest mass (if any) to less than a few MeV/c2. The gluon has negative intrinsic parity. Unlike the single photon of QED or the three W and Z bosons of the weak interaction, there are eight independent types of gluon in QCD. However, gluons are subject to the color charge phenomena (of which they have combinations of color and anticolor). Quarks carry three types of color charge; antiquarks carry three types of anticolor. Gluons may be thought of as carrying both color and anticolor. This gives nine possible combinations of color and anticolor in gluons. The following is a list of those combinations (and their schematic names): red–antired (), red–antigreen (), red–antiblue () green–antired (), green–antigreen (), green–antiblue () blue–antired (), blue–antigreen (), blue–antiblue () These are not the actual color states of observed gluons, but rather effective states.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.