Concept

Kirchhoff's theorem

Summary
In the mathematical field of graph theory, Kirchhoff's theorem or Kirchhoff's matrix tree theorem named after Gustav Kirchhoff is a theorem about the number of spanning trees in a graph, showing that this number can be computed in polynomial time from the determinant of a submatrix of the Laplacian matrix of the graph; specifically, the number is equal to any cofactor of the Laplacian matrix. Kirchhoff's theorem is a generalization of Cayley's formula which provides the number of spanning trees in a complete graph. Kirchhoff's theorem relies on the notion of the Laplacian matrix of a graph that is equal to the difference between the graph's degree matrix (a diagonal matrix with vertex degrees on the diagonals) and its adjacency matrix (a (0,1)-matrix with 1's at places corresponding to entries where the vertices are adjacent and 0's otherwise). For a given connected graph G with n labeled vertices, let λ1, λ2, ..., λn−1 be the non-zero eigenvalues of its Laplacian matrix. Then the number of spanning trees of G is First, construct the Laplacian matrix Q for the example diamond graph G (see image on the right): Next, construct a matrix Q* by deleting any row and any column from Q. For example, deleting row 1 and column 1 yields Finally, take the determinant of Q* to obtain t(G), which is 8 for the diamond graph. (Notice t(G) is the (1,1)-cofactor of Q in this example.) (The proof below is based on the Cauchy-Binet formula. An elementary induction argument for Kirchhoff's theorem can be found on page 654 of Moore (2011).) First notice that the Laplacian matrix has the property that the sum of its entries across any row and any column is 0. Thus we can transform any minor into any other minor by adding rows and columns, switching them, and multiplying a row or a column by −1. Thus the cofactors are the same up to sign, and it can be verified that, in fact, they have the same sign. We proceed to show that the determinant of the minor M11 counts the number of spanning trees. Let n be the number of vertices of the graph, and m the number of its edges.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.