In the mathematical field of graph theory, Kirchhoff's theorem or Kirchhoff's matrix tree theorem named after Gustav Kirchhoff is a theorem about the number of spanning trees in a graph, showing that this number can be computed in polynomial time from the determinant of a submatrix of the Laplacian matrix of the graph; specifically, the number is equal to any cofactor of the Laplacian matrix. Kirchhoff's theorem is a generalization of Cayley's formula which provides the number of spanning trees in a complete graph.
Kirchhoff's theorem relies on the notion of the Laplacian matrix of a graph that is equal to the difference between the graph's degree matrix (a diagonal matrix with vertex degrees on the diagonals) and its adjacency matrix (a (0,1)-matrix with 1's at places corresponding to entries where the vertices are adjacent and 0's otherwise).
For a given connected graph G with n labeled vertices, let λ1, λ2, ..., λn−1 be the non-zero eigenvalues of its Laplacian matrix. Then the number of spanning trees of G is
First, construct the Laplacian matrix Q for the example diamond graph G (see image on the right):
Next, construct a matrix Q* by deleting any row and any column from Q. For example, deleting row 1 and column 1 yields
Finally, take the determinant of Q* to obtain t(G), which is 8 for the diamond graph. (Notice t(G) is the (1,1)-cofactor of Q in this example.)
(The proof below is based on the Cauchy-Binet formula. An elementary induction argument for Kirchhoff's theorem can be found on page 654 of Moore (2011).)
First notice that the Laplacian matrix has the property that the sum of its entries across any row and any column is 0. Thus we can transform any minor into any other minor by adding rows and columns, switching them, and multiplying a row or a column by −1. Thus the cofactors are the same up to sign, and it can be verified that, in fact, they have the same sign.
We proceed to show that the determinant of the minor M11 counts the number of spanning trees. Let n be the number of vertices of the graph, and m the number of its edges.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course aims to introduce the basic concepts and results of modern Graph Theory with special emphasis on those topics and techniques that have proved to be applicable in theoretical computer scienc
In the mathematical field of graph theory, a spanning tree T of an undirected graph G is a subgraph that is a tree which includes all of the vertices of G. In general, a graph may have several spanning trees, but a graph that is not connected will not contain a spanning tree (see about spanning forests below). If all of the edges of G are also edges of a spanning tree T of G, then G is a tree and is identical to T (that is, a tree has a unique spanning tree and it is itself).
In the mathematical theory of matroids, a graphic matroid (also called a cycle matroid or polygon matroid) is a matroid whose independent sets are the forests in a given finite undirected graph. The dual matroids of graphic matroids are called co-graphic matroids or bond matroids. A matroid that is both graphic and co-graphic is sometimes called a planar matroid (but this should not be confused with matroids of rank 3, which generalize planar point configurations); these are exactly the graphic matroids formed from planar graphs.
In graph theory, a component of an undirected graph is a connected subgraph that is not part of any larger connected subgraph. The components of any graph partition its vertices into disjoint sets, and are the induced subgraphs of those sets. A graph that is itself connected has exactly one component, consisting of the whole graph. Components are sometimes called connected components. The number of components in a given graph is an important graph invariant, and is closely related to invariants of matroids, topological spaces, and matrices.
Several fundamental problems that arise in optimization and computer science can be cast as follows: Given vectors v(1), ..., v(m) is an element of R-d and a constraint family B subset of 2([m]), find a set S. B that maximizes the squared volume of the sim ...
We develop a notion of stochastic rewriting over marked graphs – i.e. directed multigraphs with degree constraints. The approach is based on double-pushout (DPO) graph rewriting. Marked graphs are expressive enough to internalize the ‘no-dangling-edge’ con ...
Images are usually represented by features from multiple views, e.g., color and texture. In image classification, the goal is to fuse all the multi-view features in a reasonable manner and achieve satisfactory classification performance. However, the featu ...
Institute of Electrical and Electronics Engineers2013