In astrophysics, chemically peculiar stars (CP stars) are stars with distinctly unusual metal abundances, at least in their surface layers.
Chemically peculiar stars are common among hot main-sequence (hydrogen-burning) stars. These hot peculiar stars have been divided into 4 main classes on the basis of their spectra, although two classification systems are sometimes used:
non-magnetic metallic-lined (Am, CP1)
magnetic (Ap, CP2)
non-magnetic mercury-manganese (HgMn, CP3)
helium-weak (He-weak, CP4).
The class names provide a good idea of the peculiarities that set them apart from other stars on or near the main sequence.
The Am stars (CP1 stars) show weak lines of singly ionized Ca and/or Sc, but show enhanced abundances of heavy metals. They also tend to be slow rotators and have an effective temperature between 7000 and 10000K.
The Ap stars (CP2 stars) are characterized by strong magnetic fields, enhanced abundances of elements such as Si, Cr, Sr and Eu, and are also generally slow rotators. The effective temperature of these stars is stated to be between 8000 and 15000K, but the issue of calculating effective temperatures in such peculiar stars is complicated by atmospheric structure.
The HgMn stars (CP3 stars) are also classically placed within the Ap category, but they do not show the strong magnetic fields associated with classical Ap stars. As the name implies, these stars show increased abundances of singly ionized Hg and Mn. These stars are also very slow rotators, even by the standards of CP stars. The effective temperature range for these stars is quoted at between 10000 and 15000K.
The He-weak stars (CP4 stars) show weaker He lines than would be expected classically from their observed Johnson UBV colours. A rare class of He-weak stars are, paradoxically, the helium-rich stars, with temperatures of 18000–23000K.
It is generally thought that the peculiar surface compositions observed in these hot main-sequence stars have been caused by processes that happened after the star formed, such as diffusion or magnetic effects in the outer layers of the stars.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The effective temperature of a body such as a star or planet is the temperature of a black body that would emit the same total amount of electromagnetic radiation. Effective temperature is often used as an estimate of a body's surface temperature when the body's emissivity curve (as a function of wavelength) is not known. When the star's or planet's net emissivity in the relevant wavelength band is less than unity (less than that of a black body), the actual temperature of the body will be higher than the effective temperature.
A B-type main-sequence star (B V) is a main-sequence (hydrogen-burning) star of spectral type B and luminosity class V. These stars have from 2 to 16 times the mass of the Sun and surface temperatures between 10,000 and 30,000 K. B-type stars are extremely luminous and blue. Their spectra have strong neutral helium absorption lines, which are most prominent at the B2 subclass, and moderately strong hydrogen lines. Examples include Regulus and Algol A.
In astronomy, stellar classification is the classification of stars based on their spectral characteristics. Electromagnetic radiation from the star is analyzed by splitting it with a prism or diffraction grating into a spectrum exhibiting the rainbow of colors interspersed with spectral lines. Each line indicates a particular chemical element or molecule, with the line strength indicating the abundance of that element. The strengths of the different spectral lines vary mainly due to the temperature of the photosphere, although in some cases there are true abundance differences.
Context. CP2 stars show periodic photometric, spectroscopic, and magnetic variations with the rotational period. They are generally slow rotators, with rotational periods exceeding half a day, except for the late B-type star HD 60431, which has an unusuall ...
Detailed chemical abundances of very metal-poor (VMP; [Fe/H] < -2) stars are important for better understanding the first stars, early star formation, and chemical enrichment of galaxies. Big on-going and coming high-resolution spectroscopic surveys provid ...
OXFORD UNIV PRESS2023
We report on HD 213258, an Ap star that we recently identified as presenting a unique combination of rare, remarkable properties. Our study of this star is based on ESPaDOnS Stokes I and V data obtained at seven epochs spanning a time interval slightly sho ...