Summary
In mathematics, a Dirac comb (also known as sha function, impulse train or sampling function) is a periodic function with the formula for some given period . Here t is a real variable and the sum extends over all integers k. The Dirac delta function and the Dirac comb are tempered distributions. The graph of the function resembles a comb (with the s as the comb's teeth), hence its name and the use of the comb-like Cyrillic letter sha (Ш) to denote the function. The symbol , where the period is omitted, represents a Dirac comb of unit period. This implies Because the Dirac comb function is periodic, it can be represented as a Fourier series based on the Dirichlet kernel: The Dirac comb function allows one to represent both continuous and discrete phenomena, such as sampling and aliasing, in a single framework of continuous Fourier analysis on tempered distributions, without any reference to Fourier series. The Fourier transform of a Dirac comb is another Dirac comb. Owing to the Convolution Theorem on tempered distributions which turns out to be the Poisson summation formula, in signal processing, the Dirac comb allows modelling sampling by multiplication with it, but it also allows modelling periodization by convolution with it. The Dirac comb can be constructed in two ways, either by using the comb operator (performing sampling) applied to the function that is constantly , or, alternatively, by using the rep operator (performing periodization) applied to the Dirac delta . Formally, this yields (; ) where and In signal processing, this property on one hand allows sampling a function by multiplication with , and on the other hand it also allows the periodization of by convolution with (). The Dirac comb identity is a particular case of the Convolution Theorem for tempered distributions. The scaling property of the Dirac comb follows from the properties of the Dirac delta function. Since for positive real numbers , it follows that: Note that requiring positive scaling numbers instead of negative ones is not a restriction because the negative sign would only reverse the order of the summation within , which does not affect the result.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.