Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
La formule sommatoire de Poisson (parfois appelée resommation de Poisson) est une identité entre deux sommes infinies, la première construite avec une fonction , la seconde avec sa transformée de Fourier . Ici, f est une fonction sur la droite réelle ou plus généralement sur un espace euclidien. La formule a été découverte par Siméon Denis Poisson. Elle, et ses généralisations, sont importantes dans plusieurs domaines des mathématiques, dont la théorie des nombres, l'analyse harmonique, et la géométrie riemannienne. L'une des façons d'interpréter la formule unidimensionnelle est d'y voir une relation entre le spectre de l'opérateur de Laplace-Beltrami sur le cercle et les longueurs des géodésiques périodiques sur cette courbe. La formule des traces de Selberg, à l'interface de tous les domaines cités plus haut et aussi de l'analyse fonctionnelle, établit une relation du même type, mais au caractère beaucoup plus profond, entre spectre du Laplacien et longueurs des géodésiques sur les surfaces à courbure constante négative (tandis que les formules de Poisson en dimension n sont reliées au Laplacien et aux géodésiques périodiques des tores, espaces de courbure nulle). Pour toute fonction à valeurs complexes et intégrable sur R, on appelle transformée de Fourier de l'application définie par Soient a un réel strictement positif et ω = 2π/a. Si f est une fonction continue de R dans C et intégrable telle que et alors Le membre de gauche de la formule est la somme S d'une série de fonctions continues. La première des deux hypothèses sur implique que cette série converge normalement sur toute partie bornée de R. Par conséquent, sa somme est une fonction continue. De plus, S est a-périodique par définition. On peut donc calculer les coefficients complexes de sa série de Fourier : l'interversion série-intégrale étant justifiée par la convergence normale de la série définissant S. On en déduit D'après la seconde hypothèse sur , la série des c est donc absolument convergente.
, ,
Till Junge, Ali Falsafi, Martin Ladecký