In mathematics, a quasi-projective variety in algebraic geometry is a locally closed subset of a projective variety, i.e., the intersection inside some projective space of a Zariski-open and a Zariski-closed subset. A similar definition is used in scheme theory, where a quasi-projective scheme is a locally closed subscheme of some projective space.
An affine space is a Zariski-open subset of a projective space, and since any closed affine subset can be expressed as an intersection of the projective completion and the affine space embedded in the projective space, this implies that any affine variety is quasiprojective. There are locally closed subsets of projective space that are not affine, so that quasi-projective is more general than affine. Taking the complement of a single point in projective space of dimension at least 2 gives a non-affine quasi-projective variety. This is also an example of a quasi-projective variety that is neither affine nor projective.
Since quasi-projective varieties generalize both affine and projective varieties, they are sometimes referred to simply as varieties. Varieties isomorphic to affine algebraic varieties as quasi-projective varieties are called affine varieties; similarly for projective varieties. For example, the complement of a point in the affine line, i.e., , is isomorphic to the zero set of the polynomial in the affine plane. As an affine set is not closed since any polynomial zero on the complement must be zero on the affine line. For another example, the complement of any conic in projective space of dimension 2 is affine. Varieties isomorphic to open subsets of affine varieties are called quasi-affine.
Quasi-projective varieties are locally affine in the same sense that a manifold is locally Euclidean: every point of a quasi-projective variety has a neighborhood which is an affine variety. This yields a basis of affine sets for the Zariski topology on a quasi-projective variety.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The aim of the course is to provide the students with a detailed description of the modern experimental techniques for testing geomaterials. Techniques and apparatuses are presented to test materials
Algebraic geometry is the common language for many branches of modern research in mathematics. This course gives an introduction to this field by studying algebraic curves and their intersection theor
A house is the simple topic of this studio. A matter of simple complexity. Starting from elements of architecture and images of life, defining a fragment; constructing a chair; finally arriving at a h
This is a glossary of algebraic geometry. See also glossary of commutative algebra, glossary of classical algebraic geometry, and glossary of ring theory. For the number-theoretic applications, see glossary of arithmetic and Diophantine geometry. For simplicity, a reference to the base scheme is often omitted; i.e., a scheme will be a scheme over some fixed base scheme S and a morphism an S-morphism.
In algebraic geometry, a finite morphism between two affine varieties is a dense regular map which induces isomorphic inclusion between their coordinate rings, such that is integral over . This definition can be extended to the quasi-projective varieties, such that a regular map between quasiprojective varieties is finite if any point like has an affine neighbourhood V such that is affine and is a finite map (in view of the previous definition, because it is between affine varieties).
In algebraic geometry, a morphism between algebraic varieties is a function between the varieties that is given locally by polynomials. It is also called a regular map. A morphism from an algebraic variety to the affine line is also called a regular function. A regular map whose inverse is also regular is called biregular, and the biregular maps are the isomorphisms of algebraic varieties.
We prove that if (X, A) is a threefold pair with mild singularities such that -(KX + A) is nef, then the numerical class of -(KX + A) is effective. ...
The project "Citizen Bench" aimed a better understanding of the variety of urban seating-needs. This report summarises the results of the citizen engagement project on public benches in the City of Munich. In the framework of this pilot project, a method ...
EPFL2022
Protecting ML classifiers from adversarial examples is crucial. We propose that the main threat is an attacker perturbing a confidently classified input to produce a confident misclassification. We consider in this paper the attack in which a small number ...