In mathematics, a quasi-projective variety in algebraic geometry is a locally closed subset of a projective variety, i.e., the intersection inside some projective space of a Zariski-open and a Zariski-closed subset. A similar definition is used in scheme theory, where a quasi-projective scheme is a locally closed subscheme of some projective space.
An affine space is a Zariski-open subset of a projective space, and since any closed affine subset can be expressed as an intersection of the projective completion and the affine space embedded in the projective space, this implies that any affine variety is quasiprojective. There are locally closed subsets of projective space that are not affine, so that quasi-projective is more general than affine. Taking the complement of a single point in projective space of dimension at least 2 gives a non-affine quasi-projective variety. This is also an example of a quasi-projective variety that is neither affine nor projective.
Since quasi-projective varieties generalize both affine and projective varieties, they are sometimes referred to simply as varieties. Varieties isomorphic to affine algebraic varieties as quasi-projective varieties are called affine varieties; similarly for projective varieties. For example, the complement of a point in the affine line, i.e., , is isomorphic to the zero set of the polynomial in the affine plane. As an affine set is not closed since any polynomial zero on the complement must be zero on the affine line. For another example, the complement of any conic in projective space of dimension 2 is affine. Varieties isomorphic to open subsets of affine varieties are called quasi-affine.
Quasi-projective varieties are locally affine in the same sense that a manifold is locally Euclidean: every point of a quasi-projective variety has a neighborhood which is an affine variety. This yields a basis of affine sets for the Zariski topology on a quasi-projective variety.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The aim of the course is to provide the students with a detailed description of the modern experimental techniques for testing geomaterials. Techniques and apparatuses are presented to test materials
Algebraic geometry is the common language for many branches of modern research in mathematics. This course gives an introduction to this field by studying algebraic curves and their intersection theor
A house is the simple topic of this studio. A matter of simple complexity. Starting from elements of architecture and images of life, defining a fragment; constructing a chair; finally arriving at a h
This is a glossary of algebraic geometry. See also glossary of commutative algebra, glossary of classical algebraic geometry, and glossary of ring theory. For the number-theoretic applications, see glossary of arithmetic and Diophantine geometry. For simplicity, a reference to the base scheme is often omitted; i.e., a scheme will be a scheme over some fixed base scheme S and a morphism an S-morphism.
En géométrie algébrique, un morphisme de type fini peut être pensé comme une famille de variétés algébriques paramétrée par un schéma de base. C'est un des types de morphismes les plus couramment étudiés. Soit un morphisme de schémas. On dit que est de type fini si pour tout ouvert affine de , est quasi-compact (i.e. réunion finie d'ouverts affines) et que pour tout ouvert affine contenu dans , le morphisme canonique est de type fini.
In algebraic geometry, a morphism between algebraic varieties is a function between the varieties that is given locally by polynomials. It is also called a regular map. A morphism from an algebraic variety to the affine line is also called a regular function. A regular map whose inverse is also regular is called biregular, and the biregular maps are the isomorphisms of algebraic varieties.
Protecting ML classifiers from adversarial examples is crucial. We propose that the main threat is an attacker perturbing a confidently classified input to produce a confident misclassification. We consider in this paper the attack in which a small number ...
We prove that if (X, A) is a threefold pair with mild singularities such that -(KX + A) is nef, then the numerical class of -(KX + A) is effective. ...
The project "Citizen Bench" aimed a better understanding of the variety of urban seating-needs. This report summarises the results of the citizen engagement project on public benches in the City of Munich. In the framework of this pilot project, a method ...