In graph theory, a branch of mathematics, many important families of graphs can be described by a finite set of individual graphs that do not belong to the family and further exclude all graphs from the family which contain any of these forbidden graphs as (induced) subgraph or minor.
A prototypical example of this phenomenon is Kuratowski's theorem, which states that a graph is planar (can be drawn without crossings in the plane) if and only if it does not contain either of two forbidden graphs, the complete graph K_5 and the complete bipartite graph K_3,3. For Kuratowski's theorem, the notion of containment is that of graph homeomorphism, in which a subdivision of one graph appears as a subgraph of the other. Thus, every graph either has a planar drawing (in which case it belongs to the family of planar graphs) or it has a subdivision of at least one of these two graphs as a subgraph (in which case it does not belong to the planar graphs).
More generally, a forbidden graph characterization is a method of specifying a family of graph, or hypergraph, structures, by specifying substructures that are forbidden to exist within any graph in the family. Different families vary in the nature of what is forbidden. In general, a structure G is a member of a family if and only if a forbidden substructure is not contained in G. The forbidden substructure might be one of:
subgraphs, smaller graphs obtained from subsets of the vertices and edges of a larger graph,
induced subgraphs, smaller graphs obtained by selecting a subset of the vertices and using all edges with both endpoints in that subset,
homeomorphic subgraphs (also called topological minors), smaller graphs obtained from subgraphs by collapsing paths of degree-two vertices to single edges, or
graph minors, smaller graphs obtained from subgraphs by arbitrary edge contractions.
The set of structures that are forbidden from belonging to a given graph family can also be called an obstruction set for that family.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In graph theory, a threshold graph is a graph that can be constructed from a one-vertex graph by repeated applications of the following two operations: Addition of a single isolated vertex to the graph. Addition of a single dominating vertex to the graph, i.e. a single vertex that is connected to all other vertices. For example, the graph of the figure is a threshold graph. It can be constructed by beginning with a single-vertex graph (vertex 1), and then adding black vertices as isolated vertices and red vertices as dominating vertices, in the order in which they are numbered.
In graph theory, a cograph, or complement-reducible graph, or P4-free graph, is a graph that can be generated from the single-vertex graph K1 by complementation and disjoint union. That is, the family of cographs is the smallest class of graphs that includes K1 and is closed under complementation and disjoint union. Cographs have been discovered independently by several authors since the 1970s; early references include , , , and . They have also been called D*-graphs, hereditary Dacey graphs (after the related work of James C.
In graph theory, an area of mathematics, a claw-free graph is a graph that does not have a claw as an induced subgraph. A claw is another name for the complete bipartite graph K1,3 (that is, a star graph comprising three edges, three leaves, and a central vertex). A claw-free graph is a graph in which no induced subgraph is a claw; i.e., any subset of four vertices has other than only three edges connecting them in this pattern. Equivalently, a claw-free graph is a graph in which the neighborhood of any vertex is the complement of a triangle-free graph.
The class covers topics related to statistical inference and algorithms on graphs: basic random graphs concepts, thresholds, subgraph containment (planted clique), connectivity, broadcasting on trees,
The course aims to introduce the basic concepts and results of modern Graph Theory with special emphasis on those topics and techniques that have proved to be applicable in theoretical computer scienc
This course addresses the relationship between specific technological features and the learners' cognitive processes. It also covers the methods and results of empirical studies on this topic: do stud
Explores convergence rate in networked control systems and consensus in digraphs, emphasizing the challenges of computing Pess(A) and weight assignment.
A graph H is a minor of a second graph G if G can be transformed into H by two operations: 1) deleting nodes and/or edges, or 2) contracting edges. Coarse-grained reconfigurable array (CGRA) application mapping is closely related to the graph minor problem ...
2023
, ,
This work presents a graph neural network (GNN) framework for solving the maximum independent set (MIS) problem, inspired by dynamic programming (DP). Specifically, given a graph, we propose a DP-like recursive algorithm based on GNNs that firstly construc ...
2023
, ,
Functional materials that enable many technological applications in our everyday lives owe their unique properties to defects that are carefully engineered and incorporated into these materials during processing. However, optimizing and characterizing thes ...