In linear algebra, eigendecomposition is the factorization of a matrix into a canonical form, whereby the matrix is represented in terms of its eigenvalues and eigenvectors. Only diagonalizable matrices can be factorized in this way. When the matrix being factorized is a normal or real symmetric matrix, the decomposition is called "spectral decomposition", derived from the spectral theorem.
Eigenvalue, eigenvector and eigenspace
A (nonzero) vector v of dimension N is an eigenvector of a square N × N matrix A if it satisfies a linear equation of the form
for some scalar λ. Then λ is called the eigenvalue corresponding to v. Geometrically speaking, the eigenvectors of A are the vectors that A merely elongates or shrinks, and the amount that they elongate/shrink by is the eigenvalue. The above equation is called the eigenvalue equation or the eigenvalue problem.
This yields an equation for the eigenvalues
We call p(λ) the characteristic polynomial, and the equation, called the characteristic equation, is an Nth order polynomial equation in the unknown λ. This equation will have Nλ distinct solutions, where 1 ≤ Nλ ≤ N. The set of solutions, that is, the eigenvalues, is called the spectrum of A.
If the field of scalars is algebraically closed, then we can factor p as
The integer ni is termed the algebraic multiplicity of eigenvalue λi. The algebraic multiplicities sum to N:
For each eigenvalue λi, we have a specific eigenvalue equation
There will be 1 ≤ mi ≤ ni linearly independent solutions to each eigenvalue equation. The linear combinations of the mi solutions (except the one which gives the zero vector) are the eigenvectors associated with the eigenvalue λi. The integer mi is termed the geometric multiplicity of λi. It is important to keep in mind that the algebraic multiplicity ni and geometric multiplicity mi may or may not be equal, but we always have mi ≤ ni. The simplest case is of course when mi = ni = 1.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
L'objectif de ce cours est la maitrise des outils des processus stochastiques utiles pour un ingénieur travaillant dans les domaines des systèmes de communication, de la science des données et de l'i
In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced ʃəˈlɛski ) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations. It was discovered by André-Louis Cholesky for real matrices, and posthumously published in 1924. When it is applicable, the Cholesky decomposition is roughly twice as efficient as the LU decomposition for solving systems of linear equations.
In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a " matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra.
In the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are many different matrix decompositions; each finds use among a particular class of problems. In numerical analysis, different decompositions are used to implement efficient matrix algorithms. For instance, when solving a system of linear equations , the matrix A can be decomposed via the LU decomposition.
This paper studies kernel ridge regression in high dimensions under covariate shifts and analyzes the role of importance re-weighting. We first derive the asymptotic expansion of high dimensional kernels under covariate shifts. By a bias-variance decomposi ...
The locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm is a popular approach for computing a few smallest eigenvalues and the corresponding eigenvectors of a large Hermitian positive definite matrix A. In this work, we propose a mix ...
Given a family of nearly commuting symmetric matrices, we consider the task of computing an orthogonal matrix that nearly diagonalizes every matrix in the family. In this paper, we propose and analyze randomized joint diagonalization (RJD) for performing t ...