In probability theory, a probability distribution is infinitely divisible if it can be expressed as the probability distribution of the sum of an arbitrary number of independent and identically distributed (i.i.d.) random variables. The characteristic function of any infinitely divisible distribution is then called an infinitely divisible characteristic function.
More rigorously, the probability distribution F is infinitely divisible if, for every positive integer n, there exist n i.i.d. random variables Xn1, ..., Xnn whose sum Sn = Xn1 + ... + Xnn has the same distribution F.
The concept of infinite divisibility of probability distributions was introduced in 1929 by Bruno de Finetti. This type of decomposition of a distribution is used in probability and statistics to find families of probability distributions that might be natural choices for certain models or applications. Infinitely divisible distributions play an important role in probability theory in the context of limit theorems.
Examples of continuous distributions that are infinitely divisible are the normal distribution, the Cauchy distribution, the Lévy distribution, and all other members of the stable distribution family, as well as the Gamma distribution, the chi-square distribution, the Wald distribution, the Log-normal distribution and the Student's t-distribution.
Among the discrete distributions, examples are the Poisson distribution and the negative binomial distribution (and hence the geometric distribution also). The one-point distribution whose only possible outcome is 0 is also (trivially) infinitely divisible.
The uniform distribution and the binomial distribution are not infinitely divisible, nor are any other distributions with bounded support (≈ finite-sized domain), other than the one-point distribution mentioned above. The distribution of the reciprocal of a random variable having a Student's t-distribution is also not infinitely divisible.
Any compound Poisson distribution is infinitely divisible; this follows immediately from the definition.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
We cover the theory and applications of sparse stochastic processes (SSP). SSP are solutions of differential equations driven by non-Gaussian innovations. They admit a parsimonious representation in a
This course provides in-depth understanding of the most fundamental algorithms in statistical pattern recognition or machine learning (including Deep Learning) as well as concrete tools (as Python sou
In probability theory and statistics, the Poisson distribution is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time or space if these events occur with a known constant mean rate and independently of the time since the last event. It is named after French mathematician Siméon Denis Poisson ('pwɑːsɒn; pwasɔ̃). The Poisson distribution can also be used for the number of events in other specified interval types such as distance, area, or volume.
In probability theory and statistics, the characteristic function of any real-valued random variable completely defines its probability distribution. If a random variable admits a probability density function, then the characteristic function is the Fourier transform of the probability density function. Thus it provides an alternative route to analytical results compared with working directly with probability density functions or cumulative distribution functions.
In probability theory, an indecomposable distribution is a probability distribution that cannot be represented as the distribution of the sum of two or more non-constant independent random variables: Z ≠ X + Y. If it can be so expressed, it is decomposable: Z = X + Y. If, further, it can be expressed as the distribution of the sum of two or more independent identically distributed random variables, then it is divisible: Z = X1 + X2. The simplest examples are Bernoulli-distributeds: if then the probability distribution of X is indecomposable.
We establish a Chung-type law of the iterated logarithm and the exact local and uniform moduli of continuity for a large class of anisotropic Gaussian random fields with a harmonizable-type integral representation and the property of strong local nondeterm ...
Given a sequence L & x2d9;epsilon of Levy noises, we derive necessary and sufficient conditions in terms of their variances sigma 2(epsilon) such that the solution to the stochastic heat equation with noise sigma(epsilon)-1L & x2d9;epsilon converges in law ...
In the field of plasma physics, suprathermal ions are encountered e.g. in astrophysical jets, the solar wind, as well as fusion plasmas, where they originate from neutral beam injection or fusion reactions. One aspect of shared interest with astrophysical ...