An exact sequence is a sequence of morphisms between objects (for example, groups, rings, modules, and, more generally, objects of an ) such that the of one morphism equals the kernel of the next. In the context of group theory, a sequence of groups and group homomorphisms is said to be exact at if . The sequence is called exact if it is exact at each for all , i.e., if the image of each homomorphism is equal to the kernel of the next. The sequence of groups and homomorphisms may be either finite or infinite. A similar definition can be made for other algebraic structures. For example, one could have an exact sequence of vector spaces and linear maps, or of modules and module homomorphisms. More generally, the notion of an exact sequence makes sense in any with s and cokernels, and more specially in abelian categories, where it is widely used. To understand the definition, it is helpful to consider relatively simple cases where the sequence is of group homomorphisms, is finite, and begins or ends with the trivial group. Traditionally, this, along with the single identity element, is denoted 0 (additive notation, usually when the groups are abelian), or denoted 1 (multiplicative notation). Consider the sequence 0 → A → B. The image of the leftmost map is 0. Therefore the sequence is exact if and only if the rightmost map (from A to B) has kernel {0}; that is, if and only if that map is a monomorphism (injective, or one-to-one). Consider the dual sequence B → C → 0. The kernel of the rightmost map is C. Therefore the sequence is exact if and only if the image of the leftmost map (from B to C) is all of C; that is, if and only if that map is an epimorphism (surjective, or onto). Therefore, the sequence 0 → X → Y → 0 is exact if and only if the map from X to Y is both a monomorphism and epimorphism (that is, a bimorphism), and so usually an isomorphism from X to Y (this always holds in exact categories like Set). Short exact sequences are exact sequences of the form As established above, for any such short exact sequence, f is a monomorphism and g is an epimorphism.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (12)
MATH-311: Algebra IV - rings and modules
Ring and module theory with a major emphasis on commutative algebra and a minor emphasis on homological algebra.
MATH-497: Homotopy theory
We propose an introduction to homotopy theory for topological spaces. We define higher homotopy groups and relate them to homology groups. We introduce (co)fibration sequences, loop spaces, and suspen
ME-523: Nonlinear Control Systems
Les systèmes non linéaires sont analysés en vue d'établir des lois de commande. On présente la stabilité au sens de Lyapunov, ainsi que des méthodes de commande géométrique (linéarisation exacte). Div
Show more
Related lectures (62)
Exact Linearization: Earth Dynamics and Stabilization
Explores exact linearization techniques for transforming non-linear systems into linear ones, emphasizing system stability.
Zig Zag Lemma
Covers the Zig Zag Lemma and the long exact sequence of relative homology.
Cohomology Groups: Hopf Formula
Explores the Hopf formula in cohomology groups, emphasizing the 4-term exact sequence and its implications.
Show more
Related publications (54)

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.