Summary
In mathematics, more specifically functional analysis and operator theory, the notion of unbounded operator provides an abstract framework for dealing with differential operators, unbounded observables in quantum mechanics, and other cases. The term "unbounded operator" can be misleading, since "unbounded" should sometimes be understood as "not necessarily bounded"; "operator" should be understood as "linear operator" (as in the case of "bounded operator"); the domain of the operator is a linear subspace, not necessarily the whole space; this linear subspace is not necessarily closed; often (but not always) it is assumed to be dense; in the special case of a bounded operator, still, the domain is usually assumed to be the whole space. In contrast to bounded operators, unbounded operators on a given space do not form an algebra, nor even a linear space, because each one is defined on its own domain. The term "operator" often means "bounded linear operator", but in the context of this article it means "unbounded operator", with the reservations made above. The given space is assumed to be a Hilbert space. Some generalizations to Banach spaces and more general topological vector spaces are possible. The theory of unbounded operators developed in the late 1920s and early 1930s as part of developing a rigorous mathematical framework for quantum mechanics. The theory's development is due to John von Neumann and Marshall Stone. Von Neumann introduced using graphs to analyze unbounded operators in 1932. Let X, Y be Banach spaces. An unbounded operator (or simply operator) T : D(T) → Y is a linear map T from a linear subspace D(T) ⊆ X—the domain of T—to the space Y. Contrary to the usual convention, T may not be defined on the whole space X. An operator T is said to be closed if its graph Γ(T) is a closed set. (Here, the graph Γ(T) is a linear subspace of the direct sum X ⊕ Y, defined as the set of all pairs (x, Tx), where x runs over the domain of T .
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.