Best-first search is a class of search algorithms, which explores a graph by expanding the most promising node chosen according to a specified rule.
Judea Pearl described the best-first search as estimating the promise of node n by a "heuristic evaluation function which, in general, may depend on the description of n, the description of the goal, the information gathered by the search up to that point, and most importantly, on any extra knowledge about the problem domain."
Some authors have used "best-first search" to refer specifically to a search with a heuristic that attempts to predict how close the end of a path is to a solution (or, goal), so that paths which are judged to be closer to a solution (or, goal) are extended first. This specific type of search is called greedy best-first search or pure heuristic search.
Efficient selection of the current best candidate for extension is typically implemented using a priority queue.
The A* search algorithm is an example of a best-first search algorithm, as is B*. Best-first algorithms are often used for path finding in combinatorial search. Neither A* nor B* is a greedy best-first search, as they incorporate the distance from the start in addition to estimated distances to the goal.
Using a greedy algorithm, expand the first successor of the parent. After a successor is generated:
If the successor's heuristic is better than its parent, the successor is set at the front of the queue (with the parent reinserted directly behind it), and the loop restarts.
Else, the successor is inserted into the queue (in a location determined by its heuristic value). The procedure will evaluate the remaining successors (if any) of the parent.
Below is a pseudocode example of this algorithm, where queue represents a priority queue which orders nodes based on their heuristic distances from the goal. This implementation keeps track of visited nodes, and can therefore be used for undirected graphs. It can be modified to retrieve the path.
procedure GBS(start, target) is:
mark start as v
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Software agents are widely used to control physical, economic and financial processes. The course presents practical methods for implementing software agents and multi-agent systems, supported by prog
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
A* (pronounced "A-star") is a graph traversal and path search algorithm, which is used in many fields of computer science due to its completeness, optimality, and optimal efficiency. One major practical drawback is its space complexity, as it stores all generated nodes in memory. Thus, in practical travel-routing systems, it is generally outperformed by algorithms that can pre-process the graph to attain better performance, as well as memory-bounded approaches; however, A* is still the best solution in many cases.
In mathematical optimization and computer science, heuristic (from Greek εὑρίσκω "I find, discover") is a technique designed for problem solving more quickly when classic methods are too slow for finding an exact or approximate solution, or when classic methods fail to find any exact solution. This is achieved by trading optimality, completeness, accuracy, or precision for speed. In a way, it can be considered a shortcut.
In computer science, a search algorithm is an algorithm designed to solve a search problem. Search algorithms work to retrieve information stored within particular data structure, or calculated in the search space of a problem domain, with either discrete or continuous values. Although search engines use search algorithms, they belong to the study of information retrieval, not algorithmics. The appropriate search algorithm to use often depends on the data structure being searched, and may also include prior knowledge about the data.
Covers planning with adversaries, heuristic search algorithms, and strategies for games with chance, emphasizing the significance of deliberative agents.
Solving the Lexicographic Bottleneck Assignment Problem (LexBAP) typically relies on centralised computation with order complexity. We consider the Sequential Bottleneck Assignment Problem (SeqBAP), which yields a greedy solution to the LexBAP and discuss ...
Adiabatic quantum-flux parametron (AQFP) is an energy-efficient superconducting technology. Buffer and splitter (B/S) cells must be inserted to an AQFP circuit to meet the technology-imposed constraints on path balancing and fanout branching. These cells a ...
The ongoing COVID-19 pandemic is the first epidemic in human history in which digital contact tracing has been deployed at a global scale. Tracking and quarantining all the contacts of individuals who test positive for a virus can help slow down an epidemi ...