In mathematics, the Poincaré metric, named after Henri Poincaré, is the metric tensor describing a two-dimensional surface of constant negative curvature. It is the natural metric commonly used in a variety of calculations in hyperbolic geometry or Riemann surfaces.
There are three equivalent representations commonly used in two-dimensional hyperbolic geometry. One is the Poincaré half-plane model, defining a model of hyperbolic space on the upper half-plane. The Poincaré disk model defines a model for hyperbolic space on the unit disk. The disk and the upper half plane are related by a conformal map, and isometries are given by Möbius transformations. A third representation is on the punctured disk, where relations for q-analogues are sometimes expressed. These various forms are reviewed below.
metric tensor
A metric on the complex plane may be generally expressed in the form
where λ is a real, positive function of and . The length of a curve γ in the complex plane is thus given by
The area of a subset of the complex plane is given by
where is the exterior product used to construct the volume form. The determinant of the metric is equal to , so the square root of the determinant is . The Euclidean volume form on the plane is and so one has
A function is said to be the potential of the metric if
The Laplace–Beltrami operator is given by
The Gaussian curvature of the metric is given by
This curvature is one-half of the Ricci scalar curvature.
Isometries preserve angles and arc-lengths. On Riemann surfaces, isometries are identical to changes of coordinate: that is, both the Laplace–Beltrami operator and the curvature are invariant under isometries. Thus, for example, let S be a Riemann surface with metric and T be a Riemann surface with metric . Then a map
with is an isometry if and only if it is conformal and if
Here, the requirement that the map is conformal is nothing more than the statement
that is,
The Poincaré metric tensor in the Poincaré half-plane model is given on the upper half-plane H as
where we write and .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions.
This course is an introduction to the non-perturbative bootstrap approach to Conformal Field Theory and to the Gauge/Gravity duality, emphasizing the fruitful interplay between these two ideas.
In geometry, the Poincaré disk model, also called the conformal disk model, is a model of 2-dimensional hyperbolic geometry in which all points are inside the unit disk, and straight lines are either circular arcs contained within the disk that are orthogonal to the unit circle or diameters of the unit circle. The group of orientation preserving isometries of the disk model is given by the projective special unitary group PSU(1,1), the quotient of the special unitary group SU(1,1) by its center {I, −I}.
In mathematics, a Fuchsian model is a representation of a hyperbolic Riemann surface R as a quotient of the upper half-plane H by a Fuchsian group. Every hyperbolic Riemann surface admits such a representation. The concept is named after Lazarus Fuchs. By the uniformization theorem, every Riemann surface is either elliptic, parabolic or hyperbolic. More precisely this theorem states that a Riemann surface which is not isomorphic to either the Riemann sphere (the elliptic case) or a quotient of the complex plane by a discrete subgroup (the parabolic case) must be a quotient of the hyperbolic plane by a subgroup acting properly discontinuously and freely.
In geometry, the Beltrami–Klein model, also called the projective model, Klein disk model, and the Cayley–Klein model, is a model of hyperbolic geometry in which points are represented by the points in the interior of the unit disk (or n-dimensional unit ball) and lines are represented by the chords, straight line segments with ideal endpoints on the boundary sphere. The Beltrami–Klein model is named after the Italian geometer Eugenio Beltrami and the German Felix Klein while "Cayley" in Cayley–Klein model refers to the English geometer Arthur Cayley.
Elastic surfaces that morph between multiple geometrical configurations are of significant engineering value, with applications ranging from the deployment of space-based PV arrays, the erection of temporary shelters, and the realization of flexible displa ...
2022
The work is about the study of group representations in the group of isometries of a separable complex hyperbolic space. The main part is the classification of the representations of the group of isometries of a finite dimensional complex hyperbolic spa ...
Triaxial weaving, a craft technique that enables the generation of surfaces with tri-directional arrays of initially straight elastic strips, has long been loved by basket makers and artists seeking a combination of practical and aesthetically-pleasing str ...