In mathematics, Hilbert's Nullstellensatz (German for "theorem of zeros", or more literally, "zero-locus-theorem") is a theorem that establishes a fundamental relationship between geometry and algebra. This relationship is the basis of algebraic geometry. It relates algebraic sets to ideals in polynomial rings over algebraically closed fields. This relationship was discovered by David Hilbert, who proved the Nullstellensatz in his second major paper on invariant theory in 1893 (following his seminal 1890 paper in which he proved Hilbert's basis theorem).
Let k be a field (such as the rational numbers) and K be an algebraically closed field extension (such as the complex numbers). Consider the polynomial ring and let I be an ideal in this ring. The algebraic set V(I) defined by this ideal consists of all n-tuples x = (x1,...,xn) in Kn such that f(x) = 0 for all f in I. Hilbert's Nullstellensatz states that if p is some polynomial in that vanishes on the algebraic set V(I), i.e. p(x) = 0 for all x in V(I), then there exists a natural number r such that pr is in I.
An immediate corollary is the weak Nullstellensatz: The ideal contains 1 if and only if the polynomials in I do not have any common zeros in Kn. It may also be formulated as follows: if I is a proper ideal in then V(I) cannot be empty, i.e. there exists a common zero for all the polynomials in the ideal in every algebraically closed extension of k. This is the reason for the name of the theorem, which can be proved easily from the 'weak' form using the Rabinowitsch trick. The assumption of considering common zeros in an algebraically closed field is essential here; for example, the elements of the proper ideal (X2 + 1) in do not have a common zero in
With the notation common in algebraic geometry, the Nullstellensatz can also be formulated as
for every ideal J. Here, denotes the radical of J and I(U) is the ideal of all polynomials that vanish on the set U.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition. Conventions regarding the definition of an algebraic variety differ slightly.
Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings; rings of algebraic integers, including the ordinary integers ; and p-adic integers. Commutative algebra is the main technical tool in the local study of schemes.
In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring (which is also a commutative algebra) formed from the set of polynomials in one or more indeterminates (traditionally also called variables) with coefficients in another ring, often a field. Often, the term "polynomial ring" refers implicitly to the special case of a polynomial ring in one indeterminate over a field. The importance of such polynomial rings relies on the high number of properties that they have in common with the ring of the integers.
P-adic numbers are a number theoretic analogue of the real numbers, which interpolate between arithmetics, analysis and geometry. In this course we study their basic properties and give various applic
Information is processed in physical devices. In the quantum regime the concept of classical bit is replaced by the quantum bit. We introduce quantum principles, and then quantum communications, key d
Covers rings, modules, fields, minimal ideals, and the Nullstellensatz theorem.
Covers the concept of forms in algebraic geometry and the implications of constructing Bloch(A) from glued copies of A.
Covers the concept of density matrix and its properties, focusing on statistical mixtures and measurements.
Let R be a semilocal Dedekind domain with fraction field F. It is shown that two hereditary R-orders in central simple F-algebras that become isomorphic after tensoring with F and with some faithfully flat etale R-algebra are isomorphic. On the other hand, ...
Diffusion adaptation is a powerful strategy for distributed estimation and learning over networks. Motivated by the concept of combining adaptive filters, this work proposes a combination framework that aggregates the operation of multiple diffusion strate ...
Combining diffusion strategies with complementary properties enables enhanced performance when they can be run simultaneously. In this article, we first propose two schemes for the convex combination of two diffusion strategies, namely, the power-normalize ...