Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Le théorème des zéros de Hilbert, parfois appelé Nullstellensatz, est un théorème d'algèbre commutative qui est à la base du lien entre les idéaux et les variétés algébriques. Il a été démontré par le mathématicien allemand David Hilbert. Une algèbre de type fini sur K est un anneau quotient d'un anneau de polynômes K[X_1,...,X_n] par un idéal. Sa structure de K-algèbre est induite par celle de K[X_1,...,X_n]. Il existe plusieurs formulations du théorème des zéros de Hilbert. Théorème 1 (Lemme de Zariski). Soient K un corps et A une K-algèbre de type fini. Alors tout quotient de A par un idéal maximal est une extension finie de K. De façon équivalente : si A est un corps, alors c'est une extension finie de K. Procédons par récurrence sur le nombre de générateurs de la K-algèbre A, supposée être un corps. Il faut montrer que ces générateurs sont algébriques sur K. S'il n'y a pas de générateur, il n'y a rien à démontrer. Supposons le résultat vrai pour toute K-algèbre engendrée par n générateurs qui soit également un corps et donnons-nous une K-algèbre A engendrée par n + 1 éléments qui soit un corps. A est engendrée par sur , corps des fractions de inclus dans le corps A. Par hypothèse de récurrence, les , sont annulés par des polynômes unitaires à coefficients dans et il reste à voir que est algébrique sur K. Notant le produit de tous les dénominateurs intervenant dans les coefficients des , les sont entiers sur le localisé , donc A est entier sur . Si était transcendant sur K, alors serait intégralement clos donc, d'après le point précédent, égal à , ce qui est absurde. Finalement, est bien algébrique sur K. Ce théorème a plusieurs conséquences immédiates. On note Spm A le spectre maximal d'un anneau A, l'ensemble des idéaux maximaux de A. Théorème 2 (Nullstellensatz faible). Supposons que est algébriquement clos. Alors la fonction est une bijection, où désigne l'idéal engendré par les . Autrement dit, un point de s'identifie avec un idéal maximal de polynômes à indéterminées sur quand est algébriquement clos.