An interstellar cloud is generally an accumulation of gas, plasma, and dust in our and other galaxies. Put differently, an interstellar cloud is a denser-than-average region of the interstellar medium, the matter and radiation that exists in the space between the star systems in a galaxy. Depending on the density, size, and temperature of a given cloud, its hydrogen can be neutral, making an H I region; ionized, or plasma making it an H II region; or molecular, which are referred to simply as molecular clouds, or sometime dense clouds. Neutral and ionized clouds are sometimes also called diffuse clouds. An interstellar cloud is formed by the gas and dust particles from a red giant in its later life. The chemical composition of interstellar clouds is determined by studying electromagnetic radiation that they emanate, and we receive – from radio waves through visible light, to gamma rays on the electromagnetic spectrum – that we receive from them. Large radio telescopes scan the intensity in the sky of particular frequencies of electromagnetic radiation, which are characteristic of certain molecules' spectra. Some interstellar clouds are cold and tend to give out electromagnetic radiation of large wavelengths. A map of the abundance of these molecules can be made, enabling an understanding of the varying composition of the clouds. In hot clouds, there are often ions of many elements, whose spectra can be seen in visible and ultraviolet light. Radio telescopes can also scan over the frequencies from one point in the map, recording the intensities of each type of molecule. Peaks of frequencies mean that an abundance of that molecule or atom is present in the cloud. The height of the peak is proportional to the relative percentage that it makes up. Until recently, the rates of reactions in interstellar clouds were expected to be very slow, with minimal products being produced due to the low temperature and density of the clouds. However, organic molecules were observed in the spectra that scientists would not have expected to find under these conditions, such as formaldehyde, methanol, and vinyl alcohol.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
PHYS-753: Dynamics of astrophysical fluids and plasmas
The dynamics of ordinary matter in the Universe follows the laws of (magneto)hydrodynamics. In this course, the system of equations that describes astrophysical fluids will be discussed on the basis o
ENV-410: Science of climate change
The course equips students with a comprehensive scientific understanding of climate change covering a wide range of topics from physical principles, historical climate change, greenhouse gas emissions
Related lectures (32)
Astrophysics: Interstellar and Intergalactic MatterMOOC: Introduction to Astrophysics
Covers molecular hydrogen, emission lines, and the color of stars.
Turbulence in Astrophysics: Reynolds Decomposition
Covers the modeling of fluid instabilities with linear perturbation theory and explores the origin of unpredictability in turbulence through the Navier-Stokes equations.
Stellar & Galactic Dynamics
Series explores the dynamics of stars and galaxies, covering topics such as stellar orbits, collisionless systems, and the Milky Way's structures.
Show more
Related publications (75)

CLASSY. VIII. Exploring the Source of Ionization with UV Interstellar Medium Diagnostics in Local High-z Analogs

Adèle Marie Françoise Plat, Xinfeng Xu

In the current JWST era, rest-frame UV spectra play a crucial role in enhancing our understanding of the interstellar medium (ISM) and stellar properties of the first galaxies in the epoch of reionization (z > 6). Here, we compare well-known and reliable o ...
Bristol2024

Temporal Conditional Coding for Dynamic Point Cloud Geometry Compression

Touradj Ebrahimi, Bowen Huang

Point clouds allow for the representation of 3D multimedia content as a set of disconnected points in space. Their inher- ent irregular geometric nature poses a challenge to efficient compression, a critical operation for both storage and trans- mission. T ...
2024
Show more
Related concepts (17)
Cosmic dust
Cosmic dust - also called extraterrestrial dust, space dust, or star dust - is dust that occurs in outer space or has fallen onto Earth. Most cosmic dust particles measure between a few molecules and , such as micrometeoroids. Larger particles are called meteoroids. Cosmic dust can be further distinguished by its astronomical location: intergalactic dust, interstellar dust, interplanetary dust (as in the zodiacal cloud), and circumplanetary dust (as in a planetary ring). There are several methods to obtain space dust measurement.
Outer space
Outer space, commonly referred to simply as space, is the expanse that exists beyond Earth and its atmosphere and between celestial bodies. Outer space is not completely empty; it is a near-perfect vacuum containing a low density of particles, predominantly a plasma of hydrogen and helium as well as electromagnetic radiation, magnetic fields, neutrinos, dust, and cosmic rays. The baseline temperature of outer space, as set by the background radiation from the Big Bang, is .
Solar System
The Solar System is the gravitationally bound system of the Sun and the objects that orbit it. The largest of such objects are the eight planets, in order from the Sun: four terrestrial planets named Mercury, Venus, Earth and Mars, two gas giants named Jupiter and Saturn, and two ice giants named Uranus and Neptune. The terrestrial planets have a definite surface and are mostly made of rock and metal. The gas giants are mostly made of hydrogen and helium, while the ice giants are mostly made of 'volatile' substances such as water, ammonia, and methane.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.