The Burnside problem asks whether a finitely generated group in which every element has finite order must necessarily be a finite group. It was posed by William Burnside in 1902, making it one of the oldest questions in group theory and was influential in the development of combinatorial group theory. It is known to have a negative answer in general, as Evgeny Golod and Igor Shafarevich provided a counter-example in 1964. The problem has many refinements and variants (see bounded and restricted below) that differ in the additional conditions imposed on the orders of the group elements, some of which are still open questions.
Initial work pointed towards the affirmative answer. For example, if a group G is finitely generated and the order of each element of G is a divisor of 4, then G is finite. Moreover, A. I. Kostrikin was able to prove in 1958 that among the finite groups with a given number of generators and a given prime exponent, there exists a largest one. This provides a solution for the restricted Burnside problem for the case of prime exponent. (Later, in 1989, Efim Zelmanov was able to solve the restricted Burnside problem for an arbitrary exponent.) Issai Schur had shown in 1911 that any finitely generated periodic group that was a subgroup of the group of invertible n × n complex matrices was finite; he used this theorem to prove the Jordan–Schur theorem.
Nevertheless, the general answer to the Burnside problem turned out to be negative. In 1964, Golod and Shafarevich constructed an infinite group of Burnside type without assuming that all elements have uniformly bounded order. In 1968, Pyotr Novikov and Sergei Adian supplied a negative solution to the bounded exponent problem for all odd exponents larger than 4381. In 1982, A. Yu. Ol'shanskii found some striking counterexamples for sufficiently large odd exponents (greater than 1010), and supplied a considerably simpler proof based on geometric ideas.
The case of even exponents turned out to be much harder to settle. In 1992, S. V.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, a matrix group is a group G consisting of invertible matrices over a specified field K, with the operation of matrix multiplication. A linear group is a group that is isomorphic to a matrix group (that is, admitting a faithful, finite-dimensional representation over K). Any finite group is linear, because it can be realized by permutation matrices using Cayley's theorem. Among infinite groups, linear groups form an interesting and tractable class.
Geometric group theory is an area in mathematics devoted to the study of finitely generated groups via exploring the connections between algebraic properties of such groups and topological and geometric properties of spaces on which these groups act (that is, when the groups in question are realized as geometric symmetries or continuous transformations of some spaces). Another important idea in geometric group theory is to consider finitely generated groups themselves as geometric objects.
In group theory, more precisely in geometric group theory, a hyperbolic group, also known as a word hyperbolic group or Gromov hyperbolic group, is a finitely generated group equipped with a word metric satisfying certain properties abstracted from classical hyperbolic geometry. The notion of a hyperbolic group was introduced and developed by . The inspiration came from various existing mathematical theories: hyperbolic geometry but also low-dimensional topology (in particular the results of Max Dehn concerning the fundamental group of a hyperbolic Riemann surface, and more complex phenomena in three-dimensional topology), and combinatorial group theory.
We determine all maximal subgroups of the direct product G^n of n copies of a group G. If G is finite, we show that the number of maximal subgroups of G^n is a quadratic function of n if G is perfect, but grows exponentially otherwise. We deduce a theorem ...
Motivated by the Benjamini-Schramm non-unicity of percolation conjecture we study the following question. For a given finitely generated nonamenable group Gamma, does there exist a generating set S such that the Cayley graph (Gamma, S), without loops and m ...
An open problem in polarization theory is to determine the binary operations that always lead to polarization (in the general multilevel sense) when they are used in Arikan style constructions. This paper, which is presented in two parts, solves this probl ...
Institute of Electrical and Electronics Engineers2017