Concept

Burnside problem

Summary
The Burnside problem asks whether a finitely generated group in which every element has finite order must necessarily be a finite group. It was posed by William Burnside in 1902, making it one of the oldest questions in group theory and was influential in the development of combinatorial group theory. It is known to have a negative answer in general, as Evgeny Golod and Igor Shafarevich provided a counter-example in 1964. The problem has many refinements and variants (see bounded and restricted below) that differ in the additional conditions imposed on the orders of the group elements, some of which are still open questions. Initial work pointed towards the affirmative answer. For example, if a group G is finitely generated and the order of each element of G is a divisor of 4, then G is finite. Moreover, A. I. Kostrikin was able to prove in 1958 that among the finite groups with a given number of generators and a given prime exponent, there exists a largest one. This provides a solution for the restricted Burnside problem for the case of prime exponent. (Later, in 1989, Efim Zelmanov was able to solve the restricted Burnside problem for an arbitrary exponent.) Issai Schur had shown in 1911 that any finitely generated periodic group that was a subgroup of the group of invertible n × n complex matrices was finite; he used this theorem to prove the Jordan–Schur theorem. Nevertheless, the general answer to the Burnside problem turned out to be negative. In 1964, Golod and Shafarevich constructed an infinite group of Burnside type without assuming that all elements have uniformly bounded order. In 1968, Pyotr Novikov and Sergei Adian supplied a negative solution to the bounded exponent problem for all odd exponents larger than 4381. In 1982, A. Yu. Ol'shanskii found some striking counterexamples for sufficiently large odd exponents (greater than 1010), and supplied a considerably simpler proof based on geometric ideas. The case of even exponents turned out to be much harder to settle. In 1992, S. V.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.