Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials (usually a metal) by chemical or electrochemical reaction with their environment. Corrosion engineering is the field dedicated to controlling and preventing corrosion.
In the most common use of the word, this means electrochemical oxidation of metal in reaction with an oxidant such as oxygen, hydrogen or hydroxide. Rusting, the formation of iron oxides, is a well-known example of electrochemical corrosion. This type of damage typically produces oxide(s) or salt(s) of the original metal and results in a distinctive orange coloration. Corrosion can also occur in materials other than metals, such as ceramics or polymers, although in this context, the term "degradation" is more common. Corrosion degrades the useful properties of materials and structures including mechanical strength, appearance, and permeability to liquids and gases.
Many structural alloys corrode merely from exposure to moisture in air, but the process can be strongly affected by exposure to certain substances. Corrosion can be concentrated locally to form a pit or crack, or it can extend across a wide area, more or less uniformly corroding the surface. Because corrosion is a diffusion-controlled process, it occurs on exposed surfaces. As a result, methods to reduce the activity of the exposed surface, such as passivation and chromate conversion, can increase a material's corrosion resistance. However, some corrosion mechanisms are less visible and less predictable.
The chemistry of corrosion is complex; it can be considered an electrochemical phenomenon. During corrosion at a particular spot on the surface of an object made of iron, oxidation takes place and that spot behaves as an anode. The electrons released at this anodic spot move through the metal to another spot on the object, and reduce oxygen at that spot in presence of H+ (which is believed to be available from carbonic acid () formed due to dissolution of carbon dioxide from air into water in moist air condition of atmosphere.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course establishes the basic concepts of thermodynamics and defines the main state functions. The concepts are then applied to the study of phase diagrams of various systems.
This course introduces the basic principles of electrochemistry, focusing on corrosion research. It covers the basics of corrosion testing and monitoring techniques, such as linear polarization, cycli
Ce cours d'introduction à la corrosion veut familiariser l'étudiant avec les mécanismes réactionnels de la corrosion, avec les différentes formes de corrosion et avec les principes de la protection co
Copper is a chemical element with the symbol Cu (from cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkish-orange color. Copper is used as a conductor of heat and electricity, as a building material, and as a constituent of various metal alloys, such as sterling silver used in jewelry, cupronickel used to make marine hardware and coins, and constantan used in strain gauges and thermocouples for temperature measurement.
Galvanization or galvanizing (also spelled galvanisation or galvanising) is the process of applying a protective zinc coating to steel or iron, to prevent rusting. The most common method is hot-dip galvanizing, in which the parts are coated by submerging them in a bath of hot, molten zinc. The zinc coating, when intact, prevents corrosive substances from reaching the underlying iron. Additional electroplating such as a chromate conversion coating may be applied to provide further surface passivation to the substrate material.
In physical chemistry and engineering, passivation is coating a material so that it becomes "passive", that is, less readily affected or corroded by the environment. Passivation involves creation of an outer layer of shield material that is applied as a microcoating, created by chemical reaction with the base material, or allowed to build by spontaneous oxidation in the air. As a technique, passivation is the use of a light coat of a protective material, such as metal oxide, to create a shield against corrosion.
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.
Covers the solubility of metal hydroxides, redox reactions in aquatic systems, arsenic mobilization, water treatment, and the Nernst equation application.
Explores the properties, applications, classification, and recent developments of aluminum and magnesium alloys, as well as their microstructure, mechanical properties, corrosion resistance, and biodegradable applications.
This research presents a comprehensive comparative analysis of the passivation kinetics of OFP-Cu and OF-Cu in simulated repository electrolyte. The study employs a range of techniques, including potentiodynamic polarization, multi-step potentiostatic pola ...
The corrosion mechanisms of a Roman iron bezel ring were investigated by in-depth characterization of its uncommon corrosion pattern and thermodynamic modelling. A silver foil and altered glass remnants were identified, covered with thick strata of magneti ...
Aqueous zinc-ion batteries (AZIBs) have gained significant attentions for their inherent safety and cost-effectiveness. However, challenges, such as dendrite growth and anodic corrosion at the Zn anode, hinder their commercial viability. In this paper, an ...