The in-gel digestion step is a part of the sample preparation for the mass spectrometric identification of proteins in course of proteomic analysis. The method was introduced in 1992 by Rosenfeld. Innumerable modifications and improvements in the basic elements of the procedure remain.
The in-gel digestion step primarily comprises the four steps; destaining, reduction and alkylation (R&A) of the cysteines in the protein, proteolytic cleavage of the protein and extraction of the generated peptides.
Proteins which were separated by 1D or 2D PAGE are usually visualised by staining with dyes like Coomassie brilliant blue (CBB) or silver. Although the sensitivity of the method is significantly lower, the use of Coomassie is more common for samples destined for mass spectrometry since the silver staining impairs the analysis. After excision of the protein band of interest from the gel most protocols require a destaining of the proteins before proceeding.
The destaining solution for CBB contains usually the buffer salt ammonium bicarbonate (NH4HCO3) and a fraction of 30%-50% organic solvent (mostly acetonitrile). The hydrophobic interactions between protein and CBB are reduced by the organic fraction of the solution. At the same time, the ionic part of the solution diminishes the electrostatic bonds between the dye and the positively charged amino acids of the protein. In contrast to a mixture of water with organic solvent the effectivity of destaining is increased. An increase of temperature promotes the destaining process. To a certain degree (< 10%) the destaining procedure is accompanied with a loss of protein. Furthermore, the removal of CBB does not affect the yield of peptides in the mass spectrometric measurement.
In the case of silver stained protein bands the destaining is accomplished by oxidation of the metallic silver attached to the protein by potassium ferricyanide or hydrogen peroxide (H2O2). The released silver ions are complexed subsequently by sodium thiosulfate.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mass spectrometry, matrix-assisted laser desorption/ionization (MALDI) is an ionization technique that uses a laser energy-absorbing matrix to create ions from large molecules with minimal fragmentation. It has been applied to the analysis of biomolecules (biopolymers such as DNA, proteins, peptides and carbohydrates) and various organic molecules (such as polymers, dendrimers and other macromolecules), which tend to be fragile and fragment when ionized by more conventional ionization methods.
Gel electrophoresis is a method for separation and analysis of biomacromolecules (DNA, RNA, proteins, etc.) and their fragments, based on their size and charge. It is used in clinical chemistry to separate proteins by charge or size (IEF agarose, essentially size independent) and in biochemistry and molecular biology to separate a mixed population of DNA and RNA fragments by length, to estimate the size of DNA and RNA fragments or to separate proteins by charge.
Proteolysis is the breakdown of proteins into smaller polypeptides or amino acids. Uncatalysed, the hydrolysis of peptide bonds is extremely slow, taking hundreds of years. Proteolysis is typically catalysed by cellular enzymes called proteases, but may also occur by intra-molecular digestion. Proteolysis in organisms serves many purposes; for example, digestive enzymes break down proteins in food to provide amino acids for the organism, while proteolytic processing of a polypeptide chain after its synthesis may be necessary for the production of an active protein.
In systems biology, proteomics represents an essential pillar. The understanding of protein function and regulation provides key information to decipher the complexity of living systems. Proteomic tec
Closely interfacing with bioengineering and medicine, this course provides foundational concepts in applying small-molecule chemical toolsets to probe the functions of living systems at the mechanisti
Chemical biology is a key discipline in biomedical research for drug discovery, synthetic biology and protein functional annotation. We will give a broad perspective of the field ranging from seminal
Analyzes a mutant DDX3 enzyme's ATPase activity and inhibitor development, covering RNA chaperones, crystal structures, and mass spectrometry-based protein profiling.
Explores quantitative proteome profiling for drug target identification through activity-based protein profiling and advanced mass spectrometry techniques.
Explores proteomics profiling methods, including ABPP, MS approaches, and quantitative target identification using SILAC and TMT labeling.
Author summaryIn recent years, the application of deep learning represented a breakthrough in the mass spectrometry (MS) field by improving the assignment of the correct sequence of amino acids from observable MS spectra without prior knowledge, also known ...
In phenylketonuria, absence or malfunction of the phenylalanine hydroxylase enzyme results in toxic accumulation of phenylalanine in the body. An injectable recombinant enzyme therapy was recently approved and has the potential to improve the quality of li ...
Background Organohalide respiration (OHR) is a bacterial anaerobic process in which chlorinated compound, e.g. tetrachloroethene (PCE), is used as terminal electron acceptors. Dehalobacter restrictus PER-K23, a paradigmatic organohalide-respiring bacterium ...