In mathematics, a dessin d'enfant is a type of graph embedding used to study Riemann surfaces and to provide combinatorial invariants for the action of the absolute Galois group of the rational numbers. The name of these embeddings is French for a "child's drawing"; its plural is either dessins d'enfant, "child's drawings", or dessins d'enfants, "children's drawings".
A dessin d'enfant is a graph, with its vertices colored alternately black and white, embedded in an oriented surface that, in many cases, is simply a plane. For the coloring to exist, the graph must be bipartite. The faces of the embedding are required be topological disks. The surface and the embedding may be described combinatorially using a rotation system, a cyclic order of the edges surrounding each vertex of the graph that describes the order in which the edges would be crossed by a path that travels clockwise on the surface in a small loop around the vertex.
Any dessin can provide the surface it is embedded in with a structure as a Riemann surface. It is natural to ask which Riemann surfaces arise in this way. The answer is provided by Belyi's theorem, which states that the Riemann surfaces that can be described by dessins are precisely those that can be defined as algebraic curves over the field of algebraic numbers. The absolute Galois group transforms these particular curves into each other, and thereby also transforms the underlying dessins.
For a more detailed treatment of this subject, see or .
Early proto-forms of dessins d'enfants appeared as early as 1856 in the icosian calculus of William Rowan Hamilton; in modern terms, these are Hamiltonian paths on the icosahedral graph.
Recognizable modern dessins d'enfants and Belyi functions were used by Felix Klein. Klein called these diagrams Linienzüge (German, plural of Linienzug "line-track", also used as a term for polygon); he used a white circle for the preimage of 0 and a '+' for the preimage of 1, rather than a black circle for 0 and white circle for 1 as in modern notation.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
In mathematics, a triangle group is a group that can be realized geometrically by sequences of reflections across the sides of a triangle. The triangle can be an ordinary Euclidean triangle, a triangle on the sphere, or a hyperbolic triangle. Each triangle group is the symmetry group of a tiling of the Euclidean plane, the sphere, or the hyperbolic plane by congruent triangles called Möbius triangles, each one a fundamental domain for the action. Let l, m, n be integers greater than or equal to 2.
In mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron. Examples of other polyhedra with icosahedral symmetry include the regular dodecahedron (the dual of the icosahedron) and the rhombic triacontahedron. Every polyhedron with icosahedral symmetry has 60 rotational (or orientation-preserving) symmetries and 60 orientation-reversing symmetries (that combine a rotation and a reflection), for a total symmetry order of 120.
In mathematics, a Fuchsian group is a discrete subgroup of PSL(2,R). The group PSL(2,R) can be regarded equivalently as a group of orientation-preserving isometries of the hyperbolic plane, or conformal transformations of the unit disc, or conformal transformations of the upper half plane, so a Fuchsian group can be regarded as a group acting on any of these spaces.
Using the Matrix Product State framework, we generalize the Affleck-Kennedy-Lieb-Tasaki (AKLT) construction to one-dimensional spin liquids with global color SU(N) symmetry, finite correlation lengths, and edge states that can belong to any self-conjugate ...