En mathématiques, les dessins d'enfants, tels qu'ils ont été introduits par Alexandre Grothendieck dans son Esquisse d'un programme, sont des objets combinatoires permettant d'énumérer de manière simple et élégante les classes d'isomorphisme de revêtements étales de la droite projective privée de trois points. Le groupe de Galois absolu opérant de manière naturelle sur de tels revêtements, le but de la théorie des dessins d'enfants est de traduire cette action en termes combinatoires.
Un dessin d'enfant est un graphe abstrait connexe muni de deux structures additionnelles :
Une structure bipartite sur ses sommets, c.-à-d. une distinction entre sommets blancs et noirs de telle sorte que les extrémités d'une arête n'aient jamais la même couleur ;
Un ordre cyclique des arêtes concourantes en un même sommet.
La première de ces deux conditions implique, par exemple, que le graphe ne possède pas de boucle (arête ayant les deux extrémités qui coïncident). L'ordre cyclique est crucial dans la définition ; en guise d'exemple, les deux derniers dessins sur la droite de la figure 1 sont distincts tout en correspondant au même graphe abstrait.
Le degré d'un dessin d'enfant est le nombre d'arêtes qui le composent. La valence d'un sommet est le nombre d'arêtes auxquelles il appartient. Le degré est donc égal à la somme des valences des sommets blancs (ou la somme des valences des sommets noirs). Il existe un nombre fini de dessins d'enfants de degré fixé.
Soit la sphère privée de trois points et . Ayant fixé un point base de , le groupe fondamental topologique est libre, engendré par deux éléments. De manière plus précise, les lacets simples et autour de et constituent des générateurs canoniques de , le lacet autour de étant obtenu par la relation . On rappelle qu'il existe une bijection entre l'ensemble des classes d'isomorphie de revêtements topologiques (finis) de et les classes de conjugaison de sous-groupes d'indice fini de .
Étant donné un dessin d'enfant, il est maintenant possible de définir une action à droite de sur l'ensemble de ses arêtes : le générateur (resp.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
In mathematics, a triangle group is a group that can be realized geometrically by sequences of reflections across the sides of a triangle. The triangle can be an ordinary Euclidean triangle, a triangle on the sphere, or a hyperbolic triangle. Each triangle group is the symmetry group of a tiling of the Euclidean plane, the sphere, or the hyperbolic plane by congruent triangles called Möbius triangles, each one a fundamental domain for the action. Let l, m, n be integers greater than or equal to 2.
In mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron. Examples of other polyhedra with icosahedral symmetry include the regular dodecahedron (the dual of the icosahedron) and the rhombic triacontahedron. Every polyhedron with icosahedral symmetry has 60 rotational (or orientation-preserving) symmetries and 60 orientation-reversing symmetries (that combine a rotation and a reflection), for a total symmetry order of 120.
In mathematics, a Fuchsian group is a discrete subgroup of PSL(2,R). The group PSL(2,R) can be regarded equivalently as a group of orientation-preserving isometries of the hyperbolic plane, or conformal transformations of the unit disc, or conformal transformations of the upper half plane, so a Fuchsian group can be regarded as a group acting on any of these spaces.
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
Using the Matrix Product State framework, we generalize the Affleck-Kennedy-Lieb-Tasaki (AKLT) construction to one-dimensional spin liquids with global color SU(N) symmetry, finite correlation lengths, and edge states that can belong to any self-conjugate ...