In probability theory and statistics, the half-normal distribution is a special case of the folded normal distribution. Let follow an ordinary normal distribution, . Then, follows a half-normal distribution. Thus, the half-normal distribution is a fold at the mean of an ordinary normal distribution with mean zero. Using the parametrization of the normal distribution, the probability density function (PDF) of the half-normal is given by where . Alternatively using a scaled precision (inverse of the variance) parametrization (to avoid issues if is near zero), obtained by setting , the probability density function is given by where . The cumulative distribution function (CDF) is given by Using the change-of-variables , the CDF can be written as where erf is the error function, a standard function in many mathematical software packages. The quantile function (or inverse CDF) is written: where and is the inverse error function The expectation is then given by The variance is given by Since this is proportional to the variance σ2 of X, σ can be seen as a scale parameter of the new distribution. The differential entropy of the half-normal distribution is exactly one bit less the differential entropy of a zero-mean normal distribution with the same second moment about 0. This can be understood intuitively since the magnitude operator reduces information by one bit (if the probability distribution at its input is even). Alternatively, since a half-normal distribution is always positive, the one bit it would take to record whether a standard normal random variable were positive (say, a 1) or negative (say, a 0) is no longer necessary. Thus, The half-normal distribution is commonly utilized as a prior probability distribution for variance parameters in Bayesian inference applications. Given numbers drawn from a half-normal distribution, the unknown parameter of that distribution can be estimated by the method of maximum likelihood, giving The bias is equal to which yields the bias-corrected maximum likelihood estimator The distribution is a special case of the folded normal distribution with μ = 0.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (32)
ENG-267: Estimation methods
Les étudiants traitent des observations entachées d'incertitude de manière rigoureuse. Ils maîtrisent les principales méthodes de compensation des mesures et d'estimation des paramètres. Ils appliquen
ENG-606(a): Design of experiments (a) - Fall semester
The course teaches the acquisition of a methodology of designing experiments for optimal quality of the results and of the number of experiments.
MSE-421: Statistical mechanics
This course presents an introduction to statistical mechanics geared towards materials scientists. The concepts of macroscopic thermodynamics will be related to a microscopic picture and a statistical
Show more
Related publications (34)

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.