In graph theory, the planarity testing problem is the algorithmic problem of testing whether a given graph is a planar graph (that is, whether it can be drawn in the plane without edge intersections). This is a well-studied problem in computer science for which many practical algorithms have emerged, many taking advantage of novel data structures. Most of these methods operate in O(n) time (linear time), where n is the number of edges (or vertices) in the graph, which is asymptotically optimal. Rather than just being a single Boolean value, the output of a planarity testing algorithm may be a planar graph embedding, if the graph is planar, or an obstacle to planarity such as a Kuratowski subgraph if it is not.
Planarity testing algorithms typically take advantage of theorems in graph theory that characterize the set of planar graphs in terms that are independent of graph drawings.
These include
Kuratowski's theorem that a graph is planar if and only if it does not contain a subgraph that is a subdivision of K5 (the complete graph on five vertices) or K3,3 (the utility graph, a complete bipartite graph on six vertices, three of which connect to each of the other three).
Wagner's theorem that a graph is planar if and only if it does not contain a minor (subgraph of a contraction) that is isomorphic to K5 or K3,3.
The Fraysseix–Rosenstiehl planarity criterion, characterizing planar graphs in terms of a left-right ordering of the edges in a depth-first search tree.
The Fraysseix–Rosenstiehl planarity criterion can be used directly as part of algorithms for planarity testing, while Kuratowski's and Wagner's theorems have indirect applications: if an algorithm can find a copy of K5 or K3,3 within a given graph, it can be sure that the input graph is not planar and return without additional computation.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The students gain an in-depth knowledge of several current and emerging areas of theoretical computer science. The course familiarizes them with advanced techniques, and develops an understanding of f
The course aims to introduce the basic concepts and results of modern Graph Theory with special emphasis on those topics and techniques that have proved to be applicable in theoretical computer scienc
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
In topological graph theory, an embedding (also spelled imbedding) of a graph on a surface is a representation of on in which points of are associated with vertices and simple arcs (homeomorphic images of ) are associated with edges in such a way that: the endpoints of the arc associated with an edge are the points associated with the end vertices of no arcs include points associated with other vertices, two arcs never intersect at a point which is interior to either of the arcs. Here a surface is a compact, connected -manifold.
In mathematics, topological graph theory is a branch of graph theory. It studies the embedding of graphs in surfaces, spatial embeddings of graphs, and graphs as topological spaces. It also studies immersions of graphs. Embedding a graph in a surface means that we want to draw the graph on a surface, a sphere for example, without two edges intersecting. A basic embedding problem often presented as a mathematical puzzle is the three utilities problem.
In graph theory, Kuratowski's theorem is a mathematical forbidden graph characterization of planar graphs, named after Kazimierz Kuratowski. It states that a finite graph is planar if and only if it does not contain a subgraph that is a subdivision of (the complete graph on five vertices) or of (a complete bipartite graph on six vertices, three of which connect to each of the other three, also known as the utility graph).
We prove the non-planarity of a family of 3-regular graphs constructed from the solutions to the Markoff equation x2 + y2 + z2 = xyz modulo prime numbers greater than 7. The proof uses Euler characteristic and an enumeration of the short cycles in these gr ...
Berlin2024
, ,
Mobile manipulator throwing is a promising method to increase the flexibility and efficiency of dynamic manipulation in factories. Its major challenge is to efficiently plan a feasible throw under a wide set of task specifications. We show that the mobile ...
Understanding how dykes behave as they propagate through the Earth’s crust has been a hot topic for VIPS researchers for many years–to see how magmatic intrusion models have evolved over the past century check out Tim Davis’ blog post! Through numerically ...