Summary
In graph theory, the planarity testing problem is the algorithmic problem of testing whether a given graph is a planar graph (that is, whether it can be drawn in the plane without edge intersections). This is a well-studied problem in computer science for which many practical algorithms have emerged, many taking advantage of novel data structures. Most of these methods operate in O(n) time (linear time), where n is the number of edges (or vertices) in the graph, which is asymptotically optimal. Rather than just being a single Boolean value, the output of a planarity testing algorithm may be a planar graph embedding, if the graph is planar, or an obstacle to planarity such as a Kuratowski subgraph if it is not. Planarity testing algorithms typically take advantage of theorems in graph theory that characterize the set of planar graphs in terms that are independent of graph drawings. These include Kuratowski's theorem that a graph is planar if and only if it does not contain a subgraph that is a subdivision of K5 (the complete graph on five vertices) or K3,3 (the utility graph, a complete bipartite graph on six vertices, three of which connect to each of the other three). Wagner's theorem that a graph is planar if and only if it does not contain a minor (subgraph of a contraction) that is isomorphic to K5 or K3,3. The Fraysseix–Rosenstiehl planarity criterion, characterizing planar graphs in terms of a left-right ordering of the edges in a depth-first search tree. The Fraysseix–Rosenstiehl planarity criterion can be used directly as part of algorithms for planarity testing, while Kuratowski's and Wagner's theorems have indirect applications: if an algorithm can find a copy of K5 or K3,3 within a given graph, it can be sure that the input graph is not planar and return without additional computation.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.