In mathematics, topological graph theory is a branch of graph theory. It studies the embedding of graphs in surfaces, spatial embeddings of graphs, and graphs as topological spaces. It also studies immersions of graphs.
Embedding a graph in a surface means that we want to draw the graph on a surface, a sphere for example, without two edges intersecting. A basic embedding problem often presented as a mathematical puzzle is the three utilities problem. Other applications can be found in printing electronic circuits where the aim is to print (embed) a circuit (the graph) on a circuit board (the surface) without two connections crossing each other and resulting in a short circuit.
Graph (topology) and Graph homology
To an undirected graph we may associate an abstract simplicial complex C with a single-element set per vertex and a two-element set per edge. The geometric realization |C| of the complex consists of a copy of the unit interval [0,1] per edge, with the endpoints of these intervals glued together at vertices. In this view, embeddings of graphs into a surface or as subdivisions of other graphs are both instances of topological embedding, homeomorphism of graphs is just the specialization of topological homeomorphism, the notion of a connected graph coincides with topological connectedness, and a connected graph is a tree if and only if its fundamental group is trivial.
Other simplicial complexes associated with graphs include the Whitney complex or clique complex, with a set per clique of the graph, and the matching complex, with a set per matching of the graph (equivalently, the clique complex of the complement of the line graph). The matching complex of a complete bipartite graph is called a chessboard complex, as it can be also described as the complex of sets of nonattacking rooks on a chessboard.
John Hopcroft and Robert Tarjan derived a means of testing the planarity of a graph in time linear to the number of edges. Their algorithm does this by constructing a graph embedding which they term a "palm tree".
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Lattice models consist of (typically random) objects living on a periodic graph. We will study some models that are mathematically interesting and representative of physical phenomena seen in the real
In topological graph theory, an embedding (also spelled imbedding) of a graph on a surface is a representation of on in which points of are associated with vertices and simple arcs (homeomorphic images of ) are associated with edges in such a way that: the endpoints of the arc associated with an edge are the points associated with the end vertices of no arcs include points associated with other vertices, two arcs never intersect at a point which is interior to either of the arcs. Here a surface is a compact, connected -manifold.
In the mathematical field of graph theory, a spanning tree T of an undirected graph G is a subgraph that is a tree which includes all of the vertices of G. In general, a graph may have several spanning trees, but a graph that is not connected will not contain a spanning tree (see about spanning forests below). If all of the edges of G are also edges of a spanning tree T of G, then G is a tree and is identical to T (that is, a tree has a unique spanning tree and it is itself).
In graph theory, the planarity testing problem is the algorithmic problem of testing whether a given graph is a planar graph (that is, whether it can be drawn in the plane without edge intersections). This is a well-studied problem in computer science for which many practical algorithms have emerged, many taking advantage of novel data structures. Most of these methods operate in O(n) time (linear time), where n is the number of edges (or vertices) in the graph, which is asymptotically optimal.
Explores consensus algorithms in networked control systems, covering topics like Metropolis-Hasting models and distributed computation of Least-Squares regression.
In this paper, we propose a novel approach that employs kinetic equations to describe the collective dynamics emerging from graph-mediated pairwise interactions in multi-agent systems. We formally show that for large graphs and specific classes of interact ...
Cambridge2024
,
This paper investigates causal influences between agents linked by a social graph and interacting over time. In particular, the work examines the dynamics of social learning models and distributed decision-making protocols, and derives expressions that rev ...
The adaptive social learning paradigm helps model how networked agents are able to form opinions on a state of nature and track its drifts in a changing environment. In this framework, the agents repeatedly update their beliefs based on private observation ...