In graph theory, the Hadwiger conjecture states that if is loopless and has no minor then its chromatic number satisfies . It is known to be true for . The conjecture is a generalization of the four-color theorem and is considered to be one of the most important and challenging open problems in the field.
In more detail, if all proper colorings of an undirected graph use or more colors, then one can find disjoint connected subgraphs of such that each subgraph is connected by an edge to each other subgraph. Contracting the edges within each of these subgraphs so that each subgraph collapses to a single vertex produces a complete graph on vertices as a minor of .
This conjecture, a far-reaching generalization of the four-color problem, was made by Hugo Hadwiger in 1943 and is still unsolved. call it "one of the deepest unsolved problems in graph theory."
An equivalent form of the Hadwiger conjecture (the contrapositive of the form stated above) is that, if there is no sequence of edge contractions (each merging the two endpoints of some edge into a single supervertex) that brings a graph to the complete graph , then must have a vertex coloring with colors.
In a minimal -coloring of any graph , contracting each color class of the coloring to a single vertex will produce a complete graph . However, this contraction process does not produce a minor of because there is (by definition) no edge between any two vertices in the same color class, thus the contraction is not an edge contraction (which is required for minors). Hadwiger's conjecture states that there exists a different way of properly edge contracting sets of vertices to single vertices, producing a complete graph , in such a way that all the contracted sets are connected.
If denotes the family of graphs having the property that all minors of graphs in can be -colored, then it follows from the Robertson–Seymour theorem that can be characterized by a finite set of forbidden minors. Hadwiger's conjecture is that this set consists of a single forbidden minor, .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
We develop a sophisticated framework for solving problems in discrete mathematics through the use of randomness (i.e., coin flipping). This includes constructing mathematical structures with unexpecte
In graph theory, a branch of mathematics, an apex graph is a graph that can be made planar by the removal of a single vertex. The deleted vertex is called an apex of the graph. It is an apex, not the apex because an apex graph may have more than one apex; for example, in the minimal nonplanar graphs K_5 or K_3,3, every vertex is an apex. The apex graphs include graphs that are themselves planar, in which case again every vertex is an apex. The null graph is also counted as an apex graph even though it has no vertex to remove.
In graph theory, a branch of mathematics, list coloring is a type of graph coloring where each vertex can be restricted to a list of allowed colors. It was first studied in the 1970s in independent papers by Vizing and by Erdős, Rubin, and Taylor. Given a graph G and given a set L(v) of colors for each vertex v (called a list), a list coloring is a choice function that maps every vertex v to a color in the list L(v). As with graph coloring, a list coloring is generally assumed to be proper, meaning no two adjacent vertices receive the same color.
In graph theory, Wagner's theorem is a mathematical forbidden graph characterization of planar graphs, named after Klaus Wagner, stating that a finite graph is planar if and only if its minors include neither K5 (the complete graph on five vertices) nor K3,3 (the utility graph, a complete bipartite graph on six vertices). This was one of the earliest results in the theory of graph minors and can be seen as a forerunner of the Robertson–Seymour theorem.
Let G = (V, E) be a simple loopless finite undirected graph. We say that G is (2-factor) expandable if for any non-edge uv, G + uv has a 2-factor F that contains uv. We are interested in the following: Given a positive integer n = vertical bar V vertical b ...
A bipartite graph G is semi-algebraic in R-d if its vertices are represented by point sets P,Q subset of R-d and its edges are defined as pairs of points (p,q) epsilon P x Q that satisfy a Boolean combination of a fixed number of polynomial equations and i ...
A classic result of Erdos, Gyarfas and Pyber states that for every coloring of the edges of K-n with r colors, there is a cover of its vertex set by at most f(r)=O(r2logr) vertex-disjoint monochromatic cycles. In particular, the minimum number of such cove ...