A cold cathode is a cathode that is not electrically heated by a filament. A cathode may be considered "cold" if it emits more electrons than can be supplied by thermionic emission alone. It is used in gas-discharge lamps, such as neon lamps, discharge tubes, and some types of vacuum tube. The other type of cathode is a hot cathode, which is heated by electric current passing through a filament. A cold cathode does not necessarily operate at a low temperature: it is often heated to its operating temperature by other methods, such as the current passing from the cathode into the gas.
A cold-cathode vacuum tube does not rely on external heating of an electrode to provide thermionic emission of electrons. Early cold-cathode devices included the Geissler tube and Plucker tube, and early cathode-ray tubes. Study of the phenomena in these devices led to the discovery of the electron.
Neon lamps are used both to produce light as indicators and for special-purpose illumination, and also as circuit elements displaying negative resistance. Addition of a trigger electrode to a device allowed the glow discharge to be initiated by an external control circuit; Bell Laboratories developed a "trigger tube" cold-cathode device in 1936.
Many types of cold-cathode switching tube were developed, including various types of thyratron, the krytron, cold-cathode displays (Nixie tube) and others. Voltage regulator tubes rely on the relatively constant voltage of a glow discharge over a range of current and were used to stabilize power-supply voltages in tube-based instruments. A Dekatron is a cold-cathode tube with multiple electrodes that is used for counting. Each time a pulse is applied to a control electrode, a glow discharge moves to a step electrode; by providing ten electrodes in each tube and cascading the tubes, a counter system can be developed and the count observed by the position of the glow discharges. Counter tubes were used widely before development of integrated circuit counter devices.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course builds upon the underlying theory in thermodynamics, reaction kinetics, and transport and applies these methods to electrosynthesis, fuel cell, and battery applications. Special focus is p
The course presents the detection of ionizing radiation in the keV and MeV energy ranges. Physical processes of radiation/matter interaction are introduced. All steps of detection are covered, as well
Ce cours permet l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimique en liaison avec les propriétés mécaniques, thermiques, électri
A gas-filled tube, also commonly known as a discharge tube or formerly as a Plücker tube, is an arrangement of electrodes in a gas within an insulating, temperature-resistant envelope. Gas-filled tubes exploit phenomena related to electric discharge in gases, and operate by ionizing the gas with an applied voltage sufficient to cause electrical conduction by the underlying phenomena of the Townsend discharge. A gas-discharge lamp is an electric light using a gas-filled tube; these include fluorescent lamps, metal-halide lamps, sodium-vapor lamps, and neon lights.
Mercury is a chemical element with the symbol Hg and atomic number 80. It is also known as quicksilver and was formerly named hydrargyrum (haɪˈdrɑrdʒərəm ) from the Greek words hydro (water) and argyros (silver). A heavy, silvery d-block element, mercury is the only metallic element that is known to be liquid at standard temperature and pressure; the only other element that is liquid under these conditions is the halogen bromine, though metals such as caesium, gallium, and rubidium melt just above room temperature.
A thyratron is a type of gas-filled tube used as a high-power electrical switch and controlled rectifier. Thyratrons can handle much greater currents than similar hard-vacuum tubes. Electron multiplication occurs when the gas becomes ionized, producing a phenomenon known as Townsend discharge. Gases used include mercury vapor, xenon, neon, and (in special high-voltage applications or applications requiring very short switching times) hydrogen. Unlike a vacuum tube (valve), a thyratron cannot be used to amplify signals linearly.
Electrolyser including a reactor (2) comprising a housing (4), fluidic channels (6a, 6b, 6c) within the housing, and electrodes (16a, 16c) comprising an anode (16a) and a cathode (16c). The fluidic channels include an inter-electrode channel (6b) arranged ...
In the field of electrochemical CO2 reduction, both continuum models and molecular dynamics (MD) models have been used to understand the electric double layer (EDL). MD often focuses on the region within a few nm of the electrode, while continuum models ca ...
Amer Chemical Soc2024
, ,
The membrane electrode assembly is the powerhouse of the anion exchange membrane water electrolyser (AEMWE), thereby placing a great importance on the associated preparation conditions. This paper investigated how annealing temperature and time impacted ac ...