Faltings's theorem is a result in arithmetic geometry, according to which a curve of genus greater than 1 over the field of rational numbers has only finitely many rational points. This was conjectured in 1922 by Louis Mordell, and known as the Mordell conjecture until its 1983 proof by Gerd Faltings. The conjecture was later generalized by replacing by any number field.
Let be a non-singular algebraic curve of genus over . Then the set of rational points on may be determined as follows:
When , there are either no points or infinitely many. In such cases, may be handled as a conic section.
When , if there are any points, then is an elliptic curve and its rational points form a finitely generated abelian group. (This is Mordell's Theorem, later generalized to the Mordell–Weil theorem.) Moreover, Mazur's torsion theorem restricts the structure of the torsion subgroup.
When , according to Faltings's theorem, has only a finite number of rational points.
Igor Shafarevich conjectured that there are only finitely many isomorphism classes of abelian varieties of fixed dimension and fixed polarization degree over a fixed number field with good reduction outside a fixed finite set of places. Aleksei Parshin showed that Shafarevich's finiteness conjecture would imply the Mordell conjecture, using what is now called Parshin's trick.
Gerd Faltings proved Shafarevich's finiteness conjecture using a known reduction to a case of the Tate conjecture, together with tools from algebraic geometry, including the theory of Néron models. The main idea of Faltings's proof is the comparison of Faltings heights and naive heights via Siegel modular varieties.
Paul Vojta gave a proof based on diophantine approximation. Enrico Bombieri found a more elementary variant of Vojta's proof.
Brian Lawrence and Akshay Venkatesh gave a proof based on p-adic Hodge theory, borrowing also some of the easier ingredients of Faltings's original proof.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Covers the basics of elliptic curves, their significance in cryptography, and their applications in public key cryptography.
In mathematics, Diophantine geometry is the study of Diophantine equations by means of powerful methods in algebraic geometry. By the 20th century it became clear for some mathematicians that methods of algebraic geometry are ideal tools to study these equations. Diophantine geometry is part of the broader field of arithmetic geometry. Four theorems in Diophantine geometry which are of fundamental importance include: Mordell–Weil theorem Roth's theorem Siegel's theorem Faltings's theorem Serge Lang published a book Diophantine Geometry in the area in 1962, and by this book he coined the term "Diophantine Geometry".
A height function is a function that quantifies the complexity of mathematical objects. In Diophantine geometry, height functions quantify the size of solutions to Diophantine equations and are typically functions from a set of points on algebraic varieties (or a set of algebraic varieties) to the real numbers. For instance, the classical or naive height over the rational numbers is typically defined to be the maximum of the numerators and denominators of the coordinates (e.g.
In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a, b, and c satisfy the equation an + bn = cn for any integer value of n greater than 2. The cases n = 1 and n = 2 have been known since antiquity to have infinitely many solutions. The proposition was first stated as a theorem by Pierre de Fermat around 1637 in the margin of a copy of Arithmetica. Fermat added that he had a proof that was too large to fit in the margin.
We provide new explicit examples of lattice sphere packings in dimensions 54, 55, 162, 163, 486 and 487 that are the densest known so far, using Kummer families of elliptic curves over global function fields.In some cases, these families of elliptic curves ...
We study the elliptic curves given by y(2) = x(3) + bx + t(3n+1) over global function fields of characteristic 3 ; in particular we perform an explicit computation of the L-function by relating it to the zeta function of a certain superelliptic curve u(3) ...
We investigate generalizations along the lines of the Mordell-Lang conjecture of the author's p-adic formal Manin-Mumford results for n-dimensional p-divisible formal groups F. In particular, given a finitely generated subgroup (sic) of F(Q(p)) and a close ...