vignette|Gerd Faltings.
En théorie des nombres, le théorème de Faltings, précédemment connu sous le nom de conjecture de Mordell donne des résultats sur le nombre de solutions d'une équation diophantienne. Il a été conjecturé par le mathématicien anglais Louis Mordell en 1922 et démontré par Gerd Faltings en 1983, soit environ soixante ans après que la conjecture fut posée.
Soit l'équation définie de la manière suivante :
avec P un polynôme à coefficients rationnels. Le problème est de trouver le nombre X de solutions de cette équation dans l'ensemble des rationnels.
Le nombre de solutions dépend du genre de la courbe C associée à cette équation (on peut définir empiriquement le genre d'une courbe comme le nombre de fois où il est possible de couper cette courbe sans obtenir deux morceaux distincts) :
si le genre vaut 0 (cas des courbes unicursales, par exemple une droite), alors :
soit X = 0,
soit X = ∞ ;
si le genre vaut 1, alors :
soit X = 0,
soit C est une courbe elliptique. En 1920, Mordell a démontré que l'ensemble des points rationnels forme un groupe abélien de type fini ;
si le genre est supérieur ou égal à 2, Mordell avait conjecturé qu'il n'y avait qu'un nombre fini de points. Ceci fut effectivement démontré par Gerd Faltings en 1983.
Soit l'équation de Fermat :
dont on cherche les solutions entières. Si est une solution avec non nul, alors est une solution à coordonnées rationnelles de l'équation
Elle correspond à une courbe de genre . Ainsi, pour supérieur ou égal à 4, elle est de genre supérieur ou égal à 2, et n'admet donc qu'un nombre fini de solutions rationnelles. On sait borner le nombre de solutions, mais pas encore leur taille. Cette approche pour démontrer le dernier théorème de Fermat, alternative à celle suivie par Andrew Wiles, n'a donc pas encore abouti ; au demeurant, elle ne permettrait (en théorie) qu'une démonstration constructive pour chaque valeur de n donnée, mais non en général.
Faltings a publié sa démonstration en 1983, avec un erratum en 1984.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
In mathematics, Diophantine geometry is the study of Diophantine equations by means of powerful methods in algebraic geometry. By the 20th century it became clear for some mathematicians that methods of algebraic geometry are ideal tools to study these equations. Diophantine geometry is part of the broader field of arithmetic geometry. Four theorems in Diophantine geometry which are of fundamental importance include: Mordell–Weil theorem Roth's theorem Siegel's theorem Faltings's theorem Serge Lang published a book Diophantine Geometry in the area in 1962, and by this book he coined the term "Diophantine Geometry".
A height function is a function that quantifies the complexity of mathematical objects. In Diophantine geometry, height functions quantify the size of solutions to Diophantine equations and are typically functions from a set of points on algebraic varieties (or a set of algebraic varieties) to the real numbers. For instance, the classical or naive height over the rational numbers is typically defined to be the maximum of the numerators and denominators of the coordinates (e.g.
En mathématiques, et plus précisément en théorie des nombres, le dernier théorème de Fermat, ou grand théorème de Fermat, ou depuis sa démonstration théorème de Fermat-Wiles, s'énonce comme suit : Énoncé par Pierre de Fermat d'une manière similaire dans une note marginale de son exemplaire d'un livre de Diophante, il a cependant attendu plus de trois siècles une preuve publiée et validée, établie par le mathématicien britannique Andrew Wiles en 1994.
We investigate generalizations along the lines of the Mordell-Lang conjecture of the author's p-adic formal Manin-Mumford results for n-dimensional p-divisible formal groups F. In particular, given a finitely generated subgroup (sic) of F(Q(p)) and a close ...
We provide new explicit examples of lattice sphere packings in dimensions 54, 55, 162, 163, 486 and 487 that are the densest known so far, using Kummer families of elliptic curves over global function fields.In some cases, these families of elliptic curves ...
EPFL2024
We study the elliptic curves given by y(2) = x(3) + bx + t(3n+1) over global function fields of characteristic 3 ; in particular we perform an explicit computation of the L-function by relating it to the zeta function of a certain superelliptic curve u(3) ...