A height function is a function that quantifies the complexity of mathematical objects. In Diophantine geometry, height functions quantify the size of solutions to Diophantine equations and are typically functions from a set of points on algebraic varieties (or a set of algebraic varieties) to the real numbers. For instance, the classical or naive height over the rational numbers is typically defined to be the maximum of the numerators and denominators of the coordinates (e.g. 7 for the coordinates (3/7, 1/2)), but in a logarithmic scale. Height functions allow mathematicians to count objects, such as rational points, that are otherwise infinite in quantity. For instance, the set of rational numbers of naive height (the maximum of the numerator and denominator when expressed in lowest terms) below any given constant is finite despite the set of rational numbers being infinite. In this sense, height functions can be used to prove asymptotic results such as Baker's theorem in transcendental number theory which was proved by . In other cases, height functions can distinguish some objects based on their complexity. For instance, the subspace theorem proved by demonstrates that points of small height (i.e. small complexity) in projective space lie in a finite number of hyperplanes and generalizes Siegel's theorem on integral points and solution of the S-unit equation. Height functions were crucial to the proofs of the Mordell–Weil theorem and Faltings's theorem by and respectively. Several outstanding unsolved problems about the heights of rational points on algebraic varieties, such as the Manin conjecture and Vojta's conjecture, have far-reaching implications for problems in Diophantine approximation, Diophantine equations, arithmetic geometry, and mathematical logic. An early form of height function was proposed by Giambattista Benedetti (c. 1563), who argued that the consonance of a musical interval could be measured by the product of its numerator and denominator (in reduced form); see .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (2)
MATH-417: Number theory II.b - selected topics
This year's topic is "Additive combinatorics and applications." We will introduce various methods from additive combinatorics, establish the sum-product theorem over finite fields and derive various a
AR-219: Advanced CAO and Integrated Modeling DIM
1ère année: bases nécessaires à la représentation informatique 2D (3D). Passage d'un à plusieurs logiciels: compétence de choisir les outils adéquats en 2D et en 3D. Mise en relation des outils de CAO
Publications associées (16)
Concepts associés (15)
Théorème de Siegel-Mahler
En mathématiques, le théorème de Siegel–Mahler ou théorème de Siegel sur les points entiers stipule que pour une courbe algébrique lisse C de genre g > 0 définie sur un corps de nombres K, dans un espace affine, il n'y a qu'un nombre fini de points sur C de coordonnées dans l'anneau de entiers O de K. Le théorème a été prouvé pour la première fois en 1929 par Carl Ludwig Siegel et a été le premier résultat majeur sur le équations diophantiennes qui ne dépendaient que du genre et non d'une forme algébrique particulière des équations.
Théorème de Roth
En mathématiques, le théorème de Roth, ou théorème de Thue-Siegel-Roth, est un énoncé de théorie des nombres, concernant plus particulièrement l'approximation diophantienne. Le résultat est le suivant : Pour tout nombre irrationnel algébrique α et pour tout ε > 0, l'inéquation d'inconnues q > 0 et p entiers : n'a qu'un nombre fini de solutions (ce n'est plus le cas pour ε = 0, d'après le théorème d'approximation de Dirichlet).
Gerd Faltings
Gerd Faltings, né le à Gelsenkirchen, est un mathématicien allemand connu pour son travail en géométrie algébrique. Il étudie les mathématiques et la physique de 1972 à 1978 à l'université de Münster, où il obtient son doctorat de mathématiques en 1978, puis son habilitation de mathématiques en 1981, après un an à Harvard grâce à une Studienstiftung (bourse d'études très sélective). Durant les années 1978-1981, il est professeur assistant à Münster. Puis il est professeur à l' de 1982 à 1984, et à Princeton de 1985 à 1994.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.